Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2022.025

Characterization of Groundwater Colloids From the Granitic KURT Site and Their Roles in Radionuclide Migration  

Baik, Min-Hoon (Korea Atomic Energy Research Institute)
Park, Tae-Jin (Korea Atomic Energy Research Institute)
Cho, Hye-Ryun (Korea Atomic Energy Research Institute)
Jung, Euo Chang (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.20, no.3, 2022 , pp. 279-296 More about this Journal
Abstract
The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10-250 nm and 33-64 ㎍·L-1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.
Keywords
Granite; Groundwater colloid; Inorganic colloid; Organic colloid; Stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A.P. Novikov, S.N. Kalmykov, S. Utsunomiya, R.C. Ewing, F. Horreard, A. Merkulov, S.B. Clark, V.V. Tkachev, and B.F. Myasoedov, "Colloid Transport of Plutonium in the Far-Field of the Mayak Production Association, Russia", Science, 314(5799), 638-641 (2006).   DOI
2 J.D.F. Ramsay, "The Role of Colloids in the Release of Radionuclides From Nuclear Waste", Radiochim. Acta, 44/45(1), 165-170 (1988).   DOI
3 M.H. Baik, J.H. Park, and W.J. Cho, "A Study on the Stability of the Ca-Bentonite Colloids Using a Dynamic Light Scattering Method", J. Korean Soc. Soil Groundwater Environ., 11(3), 12-19 (2006).
4 W.J. Cho, S. Kwon, and J.H. Park, "KURT, a SmallScale Underground Research Laboratory for the Research on a High-Level Waste Disposal", Ann. Nucl. Energy, 35(1), 132-140 (2008).   DOI
5 A. Courdouan, I. Christl, S. Meylan, P. Wersin, and R. Kretzschmar, "Isolation and Characterization of Dissolved Organic Matter From the Callovo-Oxfordian Formation", Appl. Geochem., 22(7), 1537-1548 (2007).   DOI
6 H. Rutlidge, L.K. McDonough, P. Oudone, M.S. Andersen, K. Meredith, K. Chinu, M. Peterson, and A. Baker, "Characterisation of Groundwater Dissolved Organic Matter Using LC-OCD: Implications for Water Treatment", Water Res., 188, 116422 (2021).   DOI
7 S. Bhattacharjee, "DLS and Zeta Potential - What They are and What They are not?", J. Control. Release, 235, 337-351 (2016).   DOI
8 A.B. Kersting, "Plutonium Transport in the Environment", Inorg. Chem., 52(7), 3533-3546 (2013).   DOI
9 E. Tipping and D. Cooke, "The Effects of Adsorbed Humic Substances on the Surface Charge of Goethite (α-FeOOH) in Fresh Waters", Geochim. Cosmochim. Acta, 46(1), 75-80 (1982).   DOI
10 A. Avogadro and G. De Marsily, "The Role of Colloids in Nuclear Waste Disposal", MRS Online Proceedings Library, 26, 495-505 (1983).   DOI
11 A.B. Kersting, D.W. Efurd, D.L. Finnegan, D.J. Rokop, D.K. Smith, and J.L. Thompson, "Migration of Plutonium in Ground Water at the Nevada Test Site", Nature, 397(6714), 56-59 (1999).   DOI
12 C. Degueldre, B. Baeyens, W. Goerlich, J. Riga, J. Verbist, and P. Stadelman, "Colloids in Water From a Subsurface Fracture in Granitic Rock, Grimsel Test Site, Switzerland", Geochim. Cosmochim. Acta, 53(3), 603- 610 (1989).   DOI
13 M. Filella, "Colloidal Properties of Submicron Particles in Natural Waters", in: Environmental Colloids and Particles: Behavior, Separation and Characterisation, K.J. Wilkinson and J.R. Lead, eds., 17-93, John Wiley & Sons Ltd, Chichester (2007).
14 Nationale Genossenschaft fur die Lagerung radioaktiver Abfalle, Pocos de Caldas: Nature's Experiments, Nagra bulletine 1/193 (1993).
15 J.F. McCarthy and J.M. Zachara, "ES&T Features: Subsurface Transport of Contaminants", Environ. Sci. Technol., 23(5), 496-502 (1989).
16 M.H. Baik, P.S. Hahn, and H.H. Park, "A Theoretical Study on the Radionuclide Transport Mediated by Pseudo-Colloid in the Fractured Rock Medium", J. Korean Nucl. Soc., 27(4), 532-543 (1995).
17 T. Schafer, F. Huber, H. Seher, T. Missana, U. Alonso, M. Kumke, S. Eidner, F. Claret, and F. Enzmann, "Nanoparticles and Their Influence on Radionuclide Mobility in Deep Geological Formations", Appl. Geochem., 27(2), 390-403 (2012).   DOI
18 P. Vilks, H.G. Miller, and D.C. Doern, "Natural Colloids and Suspended Particles in the Whiteshell Research Area, Manitoba, Canada, and Their Potential Effect on Radiocolloid Formation", Appl. Geochem., 6(5), 565-574 (1991).   DOI
19 M. Bouby, T.N. Manh, H. Geckeis, F.J. Scherbaum, and J.I. Kim, "Characterization of Aquatic Colloids by a Combination of LIBD and ICP-MS Following the Size Fractionation", Radiochim. Acta, 90(9-11), 727- 732 (2002).   DOI
20 B. Petrusevski, G. Bolier, A.N. Van Breemen, and G.J. Alaerts, "Tangential Flow Filtration: A Method to Concentrate Freshwater Algae", Water Res., 29(5), 1419-1424 (1995).   DOI
21 M.H. Baik, P.S. Hahn, and P. Vilks, "Characterization of Natural Colloids Sampled From Deep Granite Groundwater of the Canadian Shield", Environ. Eng. Res., 4(3), 165-176 (1999).
22 P. Vilks, J.J. Cramer, D.B. Bachinski, D.C. Doern, and H.G. Miller, "Studies of Colloids and Suspended Particles, Cigar Lake Uranium Deposit, Saskatchwan, Canada", Appl. Geochem., 8(6), 605-616 (1993).   DOI
23 C. Degueldre, "Colloid Properties in Granitic Groundwater Systems, With Emphasis on the Impact on Safety Assessment of a Radioactive Waste Repository", Mat. Res. Soc. Symp. Proc., 294, 817-823 (1993).
24 C. Degueldre, I. Triay, J.I. Kim, P. Vilks, M. Laaksoharju, and N. Miekeley, "Groundwater Colloid Properties: A Global Approach", Appl. Geochem., 15(7), 1043-1051 (2000).   DOI
25 C. Gueguen, C. Belin, and J. Dominik, "Organic Colloid Separation in Contrasting Aquatic Environments With Tangential Flow Filtration", Water Res., 36(7), 1677-1684 (2002).   DOI
26 B. Allard, F. Karlsson, and I. Neretnieks. Concentrations of Particulate Matter and Humic Substances in Deep Groundwaters and Estimated Effects on the Adsorption and Transport of Radionuclides, Swedish Nuclear Fuel and Waste Management Company Technical Report, SKB/TR 91-50 (1991).
27 E.C. Jung, H.R. Cho, M.R. Park, and M.H. Baik, "Detection of Colloidal Nanoparticles in KURT Groundwater by a Mobile Laser-Induced Breakdown Detection System", J. Korean Radioac. Waste Soc., 9(1), 41-48 (2011).   DOI
28 T. Saito, Y. Suzuki, and T. Mizuno, "Size and Elemental Analyses of Nano Colloids in Deep Granitic Groundwater: Implications for Transport of Trace Elements", Colloids Surf. A: Physicochem. Eng. Asp., 435, 48-55 (2013).   DOI
29 J. Buffle and G.G. Leppard, "Characterization of Aquatic Colloids and Macromolecules. 1. Structure and Behavior of Colloidal Material", Environ. Sci. Technol., 29(9), 2169-2175 (1995).   DOI
30 H.M. Hertz, M. Bertilson, O.V. Hofsten, S.C. Gleber, J. Sedlmair, and J. Thieme, "Laboratory X-ray Microscopy for High-Resolution Imaging of Environmental Colloid Structure", Chem. Geol., 329, 26-31 (2012).   DOI
31 T. Bundschuh, R. Knopp, and J.I. Kim, "Laser-Induced Breakdown Detection (LIBD) of Aquatic Colloids With Different Laser Systems", Colloids and Surf. A: Physicochem. Eng. Asp., 177(1), 47-55 (2001).   DOI
32 M.H. Baik, J.I. Yun, M. Bouby, P.S. Hahn, and J.I. Kim, "Characterization of Aquatic Groundwater Colloids by a Laser-Induced Breakdown Detection and ICP-MS Combined With an Asymmetric Flow Fieldflow Fractionation", Korean J. Chem. Eng., 24(5), 723-729 (2007).   DOI
33 D. Aosai, Y. Yamamoto, T. Mizuno, T. Ishigami, and H. Matsuyama, "Size and Composition Analyses of Colloids in Deep Granitic Groundwater Using Microfiltration/Utrafiltration While Mainlining in Situ Hydrochemical Conditions", Colloids Surf. A: Physicochem. Eng. Asp., 461, 279-286 (2014).   DOI
34 S.T. Kim, H.R. Cho, E.C. Jung, W. Cha, M.H. Baik, and S. Lee, "Asymmetrical Flow Field-flow Fractionation Coupled With Liquid Waveguide Capillary Cell for Monitoring Natural Colloids in Groundwater", Appl. Geochem., 87, 102-107 (2017).   DOI
35 M. Plaschke, J. Romer, R. Klenze, and J.I. Kim, "In Situ AFM Study on Sorbed Humic Acid Colloids at Different pH", Colloids Surf. A: Physicochem. Eng. Asp., 160(3), 269-279 (1999).   DOI
36 M. Filella, J. Zhang, M.E. Newman, and J. Buffle, "Analytical Applications of Photon Correlation Spectroscopy for Size Distribution Measurements of Natural Colloidal Suspensions: Capability and Limitations", Colloids Surf. A: Physicochem. Eng. Asp., 120(1-3), 27-46 (1997).   DOI
37 M.H. Baik and S.Y. Lee, "Colloidal Stability of Bentonite Clay Considering Surface Charge Properties as a Function of pH and Ionic Strength", J. Ind. Eng. Chem., 16(5), 837-841 (2010).   DOI
38 S.A. Huber, A. Balz, M. Abert, and W. Pronk, "Chacterisation of Aquatic Humic and non-humic Matter With Size-Exclusion Chromatography-Organic Carbon Detection-Organic Nitrogen Detection (LC-OCDOND)", Water Res., 45(2), 879-885 (2011).   DOI
39 J.H. Ryu, J.S. Kwon, G.Y. Kim, and Y.K. Koh, "Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site", J. Korean Radioac. Waste Soc., 10(3), 189-197 (2012).   DOI
40 M.H. Baik and J.K. Lee, "Long-term Mobility of Uranium in the Granitic KURT Site Using Isotopic Analysis and Sequential Chemical Extraction", J. Radioanal. Nucl. Chem., 326(2), 1173-1183 (2020).   DOI