• Title/Summary/Keyword: Tunnel effect

Search Result 1,701, Processing Time 0.028 seconds

A Case Study on Environmental Vibration Prediction : Ground Vibration Effect near from a Tunnel (환경지반진동의 예측사례 : 터널통과시 미치는 영향)

  • Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.45-50
    • /
    • 2007
  • When the walls and floor of a tunnel are excited by a train, a ground vibration energy is transmitted to the surface and to footing of a nearby buildings. Excessive vibration affected to a building structure causes undesirable effect to the structural safety and the perception on residents in building. In this paper, a simple approach is introduced to predict how much vibration, in terms of level and spectra, is transmitted through the ground from the tunnel vibration excitation. A high rise building on a tunnel is selected as an application example of this case study.

Effect of Tunnel Entrance Hood on Entry Compression Wave (입구후드가 고속철도 터널입구의 압축파에 미치는 영향)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.58-68
    • /
    • 1999
  • The entry compression wave, which forms at the entrance of a high-speed railway tunnel, is closely related to the pressure transients in the train/tunnel systems as well as an impulsive noise appearing at the exit of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Optimum hood shape necessary to reduce the pressure transients and impulsive noise was found to be of an abrupt type hood with its cross-sectional area 2.5 times the tunnel area. It is believed that the current results are highly useful in predicting the effects of entrance hoods and in choosing the shape of proper hood.

The 3-Dimensional Tunnel Analysis Considering Stress Concentration . Load Distribution Ratio (응력집중을 고려한 터널의 3차원 거동에 관한 연구 -하중분담률 중심으로)

  • 이인모;최항석
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-110
    • /
    • 1996
  • To simulate the three4imensional effect occurring near the tunnel face in a two -dimensional model, empirical load -dirtribution ratio concept is frequently used in tunnel design. In this paper, three -dimensional analysis is performed and its results are compared with those of two dimensional analysis'to investigate the applicability of the loadiistribution ratio concept. Especially, stress concentration near the tunnel face is investigated in depth. A parametric study is performed to investigate the effect of each factor on the load distribution ratio. The factors considered here include unsupported span length, initial stress, rock quality, tunnel size and the depth of tunnel location Moreover, the load -distribution ratios for the typical tunnel sections in Seoul Subway to be used in the tunnel design are suggested.

  • PDF

Effect of the circle tunnel on induced force distribution around underground rectangular gallery using theoretical approach, experimental test and particle flow code simulation

  • Vahab, Sarfarazi;Reza, Bahrami;Shadman Mohammadi, Bolbanabad;Fariborz, Matinpoor
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.633-649
    • /
    • 2022
  • In this study, the effect of circle tunnel on the force distribution around underground rectangular gallery was investigated using theoretical approach, experimental test and Particle flow code simulation (PFC). Gypsum model with dimension of 1500×1500 mm was built. Tensile strength of material was 1 MPa. Dimension of central gallery was 100 mm×200 mm and diameter of adjacent tunnel in its right side was 20 mm, 40 mm and 60 mm. Horizontal distance between tunnel wall and gallery edge were 25, 50, 75, 100 and 125 mm. using beam theory, the effect of tunnel diameter and distance between tunnel and gallery on the induced force around gallery was analyzed. In the laboratory test, the rate of loading displacement was set to 0.05 millimeter per minute. Also sensitivity analysis has been done. Using PFC2D, interaction between tunnel and gallery was simulated and its results were compared with experimental and theoretical analysis. The results show that the tensile force concentration has maximum value in center of the rectangular space. The tensile force concentration at the right side of the axisymmetric line of gallery has more than its value in the left side of the galleries axisymmetric line. The tensile force concentration was decreased by increasing the distance between tunnel and rectangular space. In whole of the configurations, the angles of micro cracks fluctuated between 75 and 105 degrees, which mean that the variations of tunnel situation have not any influence on the fracture angle.

Potential Model for L shaped Tunnel Field-Effect-Transistor

  • Najam, Faraz;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.170-171
    • /
    • 2016
  • A surface potential model is introduced for L-shaped tunnel field-effect-transistor(L-TFET). Excellent agreement is obtained when model results are compared with TCAD data.

  • PDF

Effect of Spatial Distribution of Geotechnical Parameters on Tunnel Deformation (지반 물성치의 공간적 분포에 따른 터널 변위 특성 분석)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.249-257
    • /
    • 2006
  • The spatial distribution of design parameters greatly affects tunnel behavior during and after construction, as well as in the long-term temporal responses. However, the tunnel design parameters commonly used in numerical modeling tend to be representative or average values of global-scale properties. Furthermore, the uncertainty and spatial variation of the design parameters increase as the tunnel scale increases. Consequently, the probability of failure also increases. In order to achieve structural stability in large-section tunnels, the design framework must take into consideration the quantitative effect of design parameter variations on tunnel behavior. Therefore, this paper suggests a statistical approach to numerical modeling to explore the effect of spatially distributed design parameters in a circular tunnel. Also, the effect of spatial variation in the lining strength is studied in this paper. The numerical results suggest that the deformation around the tunnel increases with an increase in the variation of the design parameters.

Effect of Hapgok Needling and Bee Venom Acupuncture Complex Treatment on Patients with Carpal Tunnel Syndrome (합곡자(合谷刺)와 봉약침(蜂藥鍼)으로 치료한 수근관 증후군 환자 4례)

  • Choi, Chul-Hoon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.27 no.3
    • /
    • pp.159-166
    • /
    • 2010
  • Objectives : This study was to observe the effect of Hapgok needling and Bee Venom Acupuncture on a patient with neuralgia caused by Carpal Tunnel Syndrome. Methods : The patient were treated by Hapgok needling and Bee Venom Acupuncture at acupuncture points following diagnosed as Carpal Tunnel Syndrome. Improvement of the symptoms was evaluated by VAS. Results : Carpal Tunnel Syndrome related symptoms of the patient were remarkably improved by Hapgok needling and Bee Venom Acupuncture therapy. Conclusions : These results suggested that Hapgok needling and Bee Venom Acupuncture should be one of the useful treatment methods for relieving the symptoms of Carpal Tunnel Syndrome.

A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire (터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구)

  • Yang, Sung-Jin;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Chul-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

Tunneling Effect on Sound Transmission Loss Measurement (차음성능 계측시 터널링 효과에 관한 해석적 연구)

  • 김봉기;김재승;김현실;강현주;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1228-1233
    • /
    • 2002
  • This study is aimed to evaluate a tunneling effect in association with the measurement of sound transmission loss. Based on the formulation for sound transmission loss of a finite panel in the presence of tunnel, variations of the sound transmission loss with parameters such as the location of panel and tunnel depth are investigated. It can be seen that differences in the sound transmission loss are quite evident below coincidence frequency and the sound transmission loss greatly depends on panel location in the tunnel. In comparison with the case without a tunnel, maximum difference occurs in the case where the panel is placed on the center of the tunnel and the flushing with the end of the tunnel gives the better estimation of transmission loss.

  • PDF

Groundwater Considerations in Tunnel Design (터널 설계시 지하수의 고려방안)

  • 이인모;김용진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.1-8
    • /
    • 1993
  • This paper concerns the analytical concept of tunnel design for the case where the groundwater level remains almost to a standstill even though the steady state groundwater flow occurs through tunnel drainage systems. The effect of the seepage force is considered in analysis. Two case strudies are made : the one the round shape tunnel ; the other the horse shape. The design moments, shear forces and axial forces are calculated and these results are compared to the case of water proof tunnel design as well as the case of the tunnel design without groundwater consideration.

  • PDF