• Title/Summary/Keyword: Tunnel collapse

Search Result 178, Processing Time 0.025 seconds

An analytical model for assessing soft rock tunnel collapse risk and its engineering application

  • Xue, Yiguo;Li, Xin;Li, Guangkun;Qiu, Daohong;Gong, Huimin;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.441-454
    • /
    • 2020
  • The tunnel collapse, large deformation of surrounding rock, water and mud inrush are the major geological disasters in soft rock tunnel construction. Among them, tunnel collapse has the most serious impact on tunnel construction. Current research backed theories have certain limitations in identifying the collapse risk of soft rock tunnels. Examining the Zhengwan high-speed railway tunnel, eight soft rock tunnel collapse influencing factors were selected, and the combination of indicator weights based on the analytic hierarchy process and entropy weighting methods was obtained. The results show that the groundwater condition and the integrity of the rock mass are the main influencing factors leading to a soft rock tunnel collapse. A comprehensive fuzzy evaluation model for the collapse risk of soft rock tunnels is being proposed, and the real-time collapse risk assessment of the Zhengwan tunnel is being carried out. The results obtained via the fuzzy evaluation model agree well with the actual situation. A tunnel section evaluated to have an extremely high collapse risk and experienced a local collapse during excavation, verifying the feasibility of the collapse risk evaluation model. The collapse risk evaluation model proposed in this paper has been demonstrated to be a promising and innovative method for the evaluation of the collapse risk of soft rock tunnels, leading to safer construction.

Mechanism Analysis of Tunnel Collapse in Weak Ground (미고결 지반에서의 터널붕락 메커니즘 분석)

  • Lee, Jae-Ho;Jeong, Yun-Young;Kim, Young-Su;Moon, Hong-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.339-347
    • /
    • 2009
  • Despite the recent improvement in tunnel excavation technique, Tunnel collapse accidents still happen. This paper suggest two typical cases in unconsolidated ground condition. Collapse causes of each case were analyzed by the measurement records and numerical simulation, and then mechanism of tunnel collapse was investigated about each case. From this study, the crucial indicators of tunnel collapse were the variation of shear strain and ground water level, also, tunnel collapse deeply related to how shear deformation around tunnel was developed according to the excavation step.

A Basic Study on the Prediction of Collapse of Tunnels Using Artificial Neural Network (인공신경망 기법을 이용한 터널 붕괴 예측에 관한 기초 연구)

  • Kim, Hong-Heum;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.5-17
    • /
    • 2016
  • Collapse of a tunnel can occur anytime, anywhere due to the special characteristics of tunnel structures and unexpected geological conditions during construction. Tunnel collapse will lead to economic losses and casualties. So various studies are continually being conducted to prevent economic losses, casualties and accidents. In this study, we analyzed data from 56 domestic construction tunnel collapse sites, and input factors to be applied to the artificial neural network were selected by the sensitivity analysis. And for the artificial neural network model design studies were carried out with the selected input factors and optimized ANN model to predict the type of tunnel collapse was determined. By using it, in 12 sites where tunnel collapse occurred applicability evaluation was conducted. Thus, the tunnel collapse type predictability was verified. These results will be able to be used as basic data for preventing and reinforcing collapse in the tunnel construction site.

A Study of RMR in Tunnel with Risk Factor of Collapse (터널 붕괴 위험도에 따른 RMR 연구)

  • Jang, Hyong-Doo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.333-340
    • /
    • 2011
  • RMR is most strongly adopted rock classification method to scheme support system in domestic tunnel. However the RMR, which is based on geological survey during design stage of tunnel, can't present the real ground accurately. In this study, authors suggested Weighted-RMR (W-RMR) which is considered weighted value of risk factors of collapse due to prevent collapse and roof falls during tunneling. According to the application of W-RMR to Bye-Gye tunnel, we could change support type flexibly by the risk factors on a face of tunnel.

Probabilistic analysis of tunnel collapse: Bayesian method for detecting change points

  • Zhou, Binghua;Xue, Yiguo;Li, Shucai;Qiu, Daohong;Tao, Yufan;Zhang, Kai;Zhang, Xueliang;Xia, Teng
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.291-303
    • /
    • 2020
  • The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.

Roof failure of shallow tunnel based on simplified stochastic medium theory

  • Huang, Xiaolin;Zhou, Zhigang;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.571-580
    • /
    • 2018
  • The failure mechanism of tunnel roof is investigated with upper bound theorem of limit analysis. The stochastic settlement and nonlinear failure criterion are considered in the present analysis. For the collapse of tunnel roof, the surface settlement is estimated by the simplified stochastic medium theory. The failure curve expressions of collapse blocks in homogeneous and in layered soils are derived, and the effects of material parameters on the potential range of failure mechanisms are discussed. The results show that the material parameters of initial cohesion, nonlinear coefficient and unit weight have significant influences on the potential range of collapse block in homogeneous media. The proportion of collapse block increases as the initial cohesion increases, while decreases as the nonlinear coefficient and the unit weight increase. The ground surface settlement increases with the tunnel radius increasing, while the possible collapse proportion decreases with increase of the tunnel radius. In layered stratum, the study is investigated to analyze the effects of material parameters of different layered media on the proportion of possible collapse block.

A Case Study of Collapse and Reinforcement for Large Span Waterway Tunnel at Thrust Fault Zone (스러스트 단층대에서의 대단면 수로터널 낙반 및 보강 사례)

  • Kim, Young-Geun;Han, Byeong-Hyun;Lee, Seung-Bok;Kim, Eung-Tae
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.251-263
    • /
    • 2011
  • The geomechanical characteristics of rock and the structural geological feature of the fault should be studied and examined for the successful construction of large-span tunnel. In this case study, that is a important case for the tunnel collapse and reinforcement during the construction for the waterway tunnel at large thrust fault zone in schist, we carried out geological and geotechnical survey for make the cause and mechanism of tunnel collapse. Also, we have designed the reinforcement and re-excavation for the safe construction for collapse zone and have carried out successfully the re-excavation and finished the final concrete lining.

A Study on the Collapse Pattern of Road Tunnel under Construction (도로 터널 사공중 발생된 붕락형태 분석 연구)

  • Lee, Su-Gon;Kim, Nag-Young;Jeon, Bok-Hyeon
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.115-123
    • /
    • 2007
  • Recently, accelerating population and advanced economy result in extending old freeways and constructing new freeways. To make a good freeway shape, tunnel constructions are also rapidly increasing. Therefore, a possibility of a collapse during a tunnel excavation is getting higher in a proportionate manner. Especially, tunnel excavation has increased in poor geological condition in order to maintain good alignment of road and the collapse of tunnel has often happened without reinforcement method. This research paper will analyze for ms and causes of the collapses for different geological conditions and applied reinforcement solutions by investigating typical collapse sites during highway tunnel constructions.

Analysis of Collapse Shape and Cause in the Highway Tunnel (고속도로터널의 붕락유형과 원인 분석)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.13-24
    • /
    • 2000
  • The collapse shapes and causes of tunnel in the highway were analyzed and reinforced methods of tunnel were investigated in the paper. Collapse shapes of tunnel are divided into three types such as subsurface failure, small scale wedge failure and slickenside strata failure. These three shapes consist of 35%, 50%, and 15%, respectively. The 85% of collapse was located near the entrance and exit of tunnel. The 15% was located at the intersection of emergency laybys. When tunnel collapses are analyzed by the failure concept, sliding failure amounts to more than 83%.

  • PDF

Collapse mechanism for deep tunnel subjected to seepage force in layered soils

  • Yang, X.L.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.741-756
    • /
    • 2015
  • The prediction of impending collapse of deep tunnel is one of the most difficult problems. Collapse mechanism of deep tunnel in layered soils is derived using a new curved failure mechanism within the framework of upper bound theorem, and effects of seepage forces are considered. Nonlinear failure criterion is adopted in the present analysis, and the possible collapse shape of deep tunnel in the layered soils is discussed in this paper. In the layered soils, the internal energy dissipations along velocity discontinuity are calculated, and the external work rates are produced by weight, seepage forces and supporting pressure. With upper bound theorem of limit analysis, two different curve functions are proposed for the two different soil stratums. The specific shape of collapse surface is discussed, using the proposed curve functions. Effects of nonlinear coefficient, initial cohesion, pore water pressure and unit weight on potential collapse are analyzed. According to the numerical results, with the nonlinear coefficient increase, the shape of collapse block will increase. With initial cohesion of the upper soil increase, the shape of failure block will be flat, and with the lower soil improving, the size of collapsing will be large. Furthermore, the shape of collapsing will decrease with the unit weight decrease.