Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.4.291

Probabilistic analysis of tunnel collapse: Bayesian method for detecting change points  

Zhou, Binghua (Geotechnical and Structural Engineering Research Center, Shandong University)
Xue, Yiguo (Geotechnical and Structural Engineering Research Center, Shandong University)
Li, Shucai (Geotechnical and Structural Engineering Research Center, Shandong University)
Qiu, Daohong (Geotechnical and Structural Engineering Research Center, Shandong University)
Tao, Yufan (Geotechnical and Structural Engineering Research Center, Shandong University)
Zhang, Kai (Geotechnical and Structural Engineering Research Center, Shandong University)
Zhang, Xueliang (Geotechnical and Structural Engineering Research Center, Shandong University)
Xia, Teng (Geotechnical and Structural Engineering Research Center, Shandong University)
Publication Information
Geomechanics and Engineering / v.22, no.4, 2020 , pp. 291-303 More about this Journal
Abstract
The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.
Keywords
tunnel collapse; deformation prediction; Bayesian method; detecting change points;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Wang, J., Li, S.C., Li, L.P., Shi, S.S., Xu, Z.H. and Lin, P. (2017a), "Collapse risk evaluation method on Bayesian network prediction model and engineering application", Adv. Comput. Des., 2(2), 121-131. https://doi.org/10.12989/acd.2017.2.2.121.   DOI
2 Wang, X.T., Li, S.C., Ma, X.Y., Xue, Y.G., Hu, J. and Li, Z.Q. (2017b), "Risk assessment of rockfall hazards in a tunnel portal section based on normal cloud model", Pol. J. Environ. Stud., 26(5), 2295-2306. https://doi.org/10.15244/pjoes/68427.   DOI
3 Xue, X.H. and Xiao, M. (2017), "Deformation evaluation on surrounding rocks of ground caverns based on PSO-LSSVM", Tunn. Undergr. Sp. Technol., 69, 171-181. https://doi.org/10.1016/j.tust.2017.06.019.   DOI
4 Xue, Y.G., Li, S.C., Zhang, Q.S., Li., S.C., Su, M.X. and Liu, Q (2008), "Prediction and early-warning technology of geological hazards in tunnel informational construction", J. Shandong Univ. Eng. Sci., 38(5), 25-30.
5 Xue, Y.G., Zhang, X.L., Li, S.C., Qiu, D.H., Su, M.X., Li, L.P., Li, Z.Q. and Tao, Y.F. (2018), "Analysis of factors influencing tunnel deformation in loess deposits by data mining: A deformation prediction model", Eng. Geol., 232, 94-103. https://doi.org/10.1016/j.enggeo.2017.11.014.   DOI
6 Yagiz, S. (2011), "P-wave velocity test for assessment of geotechnical properties of some rock materials", B. Mater. Sci., 34(4), 947-953. https://doi.org/10.1007/s12034-011-0220-3.   DOI
7 Yeh, Y.L. and Chen, T.C. (2004), "Application of grey correlation analysis for evaluating the artificial", Can. J. Civ. Eng., 31(1), 56-64. https://doi.org/10.1139/l03-074.   DOI
8 Yuan, Y.C., Li, S.C., Li, L.P., Lei, T., Wang, S. and Sun, B.L. (2016), "Risk evaluation theory and method of collapse in mountain tunnel and its engineering applications", J. Central South Univ., 47(7), 2406-2414.
9 Zhang, Y.Y., Jia, Y., Li, M. and Hou, L. (2018), "Spatiotemporal variations and relationship of PM and gaseous pollutants based on gray correlation analysis", J. Environ. Sci. Health Part ATox/Hazard Subst. Environ. Eng., 53(2), 139-145. https://doi.org/10.1080/10934529.2017.1383122.
10 Zhang, G.H., Jiao, Y.Y., Chen, L.B., Wang, H. and Li, S.C. (2015), "Analytical model for assessing collapse risk during mountain tunnel construction", Can. Geotech. J., 53(2), 326-342. https://doi.org/10.1139/cgj-2015-0064.   DOI
11 Zhou, Z.Q., Li, S.C., Li, L.P., Shi, S.S. and Xu, Z.H. (2015), "An optimal classification method for risk assessment of water inrush in karst tunnels based on grey system theory", Geomech. Eng., 8(5), 631-647. https://doi.org/10.12989/gae.2015.8.5.631.   DOI
12 Gong, F.Q., Li, X.B. and Zhang, W. (2008), "Over-excavation forecast of ground opening by using Bayes discriminant analysis method", J. Cent. South Univ. Technol., 15(4), 498-502. https://doi.org/10.1007/s11771-008-0094-8.   DOI
13 Alimoradi, A., Moradzadeh, A., Naderi, R., Salehi, M.Z. and Etemadi, A. (2008), "Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks", Tunn. Undergr. Sp. Technol., 23(6), 711-717. https://doi.org/10.1016/j.tust.2008.01.001.   DOI
14 Barry, D. and Hartigan, J.A. (1993), "A Bayesian analysis for change point problems", J. Am. Stat. Assoc., 88(421), 309-319. https://doi.org/10.1080/01621459.1993.10594323.   DOI
15 Cevik, A., Sezer, E.A., Cabalar, A.F. and Gokceoglu, C. (2011), "Modeling of the uniaxial compressive strength of some claybearing rocks using neural network", Appl. Soft Comput., 11(2), 2587-2594. https://doi.org/10.1016/j.asoc.2010.10.008.   DOI
16 Duan, K., Kwok, C.Y. and Ma, X.D. (2016), "DEM simulations of sandstone under true triaxial compressive tests", Acta Geotech., 12(3), 495-510. https://doi.org/10.1007/s11440-016-0480-6.   DOI
17 Funahashi, K. (1989), "On the approximate realization of continuous mappings by neural networks", Neural Networks, 2(3), 183-192. https://doi.org/10.1016/0893-6080(89)90003-8.   DOI
18 Gong, X.B., Han, L.G., Niu, J.J., Zhang, X.P., Wang, D.L. and Du, L.Z. (2010), "Combined migration velocity model-building and its application in tunnel seismic prediction", Appl. Geophys., 7(3), 265-271. https://doi.org/10.1007/s11770-010-0251-3.   DOI
19 Jetschny, S., Bohlen, T. and De Nil, D. (2010), "On the propagation characteristics of tunnel surface-waves for seismic prediction", Geophys. Prospec., 58(2), 245-256. https://doi.org/10.1111/j.1365-2478.2009.00823.x.   DOI
20 Huang, F., Zhao, L.H., Ling, T.H. and Yang, X.L. (2017), "Rock mass collapse mechanism of concealed karst cave beneath deep tunnel", Int. J. Rock Mech. Min. Sci., 91, 133-138. https://doi.org/10.1016/j.ijrmms.2016.11.017.   DOI
21 Liu, Y.L., Huang, X.L., Duan, J. and Zhang, H.M. (2017), "The assessment of traffic accident risk based on grey relational analysis and fuzzy comprehensive evaluation method", Nat. Hazards, 88(3), 1409-1422. https://doi.org/10.1007/s11069-017-2923-2.   DOI
22 Li, P.F., Zhao, Y. and Zhou, X.J. (2016), "Displacement characteristics of high-speed railway tunnel construction in loess ground by using multi-step excavation method", Tunn. Undergr. Sp. Technol., 51, 41-55. https://doi.org/10.1016/j.tust.2015.10.009.   DOI
23 Li, S.C., Liu, B., Xu, X.J., Nie, L.C., Liu, Z.Y., Song, J., Sun, H.F., Chen, L. and Fan, K.R. (2017), "An overview of ahead geological prospecting in tunneling", Tunn. Undergr. Sp. Technol., 63, 69-94. https://doi.org/10.1016/j.tust.2016.12.011.   DOI
24 Li, Y.Y., Zheng, Y.R. and Kang, N. (2015), "Sensitivity analysis on influencing factors of tunnel stability", Chin. J. Undergr. Sp. Eng., 11(2), 491-498.
25 Ma, G.W. and Fu, G.Y. (2014), "A rational and realistic rock mass modelling strategy for the stability analysis of blocky rock mass", Geomech. Geoeng., 9(2), 113-123. https://doi.org/10.1080/17486025.2013.871067.   DOI
26 Ocak, I. and Seker, S.E. (2013), "Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes", Environ. Earth Sci., 70(3), 1263-1276. https://doi.org/10.1007/s12665-012-2214-x.   DOI
27 Rezaei, M., Asadizadeh, M., Majdi, A. and Hossaini, M.F. (2015), "Prediction of representative deformation modulus of longwall panel roof rock strata using Mamdani fuzzy system", Int. J. Min. Sci. Technol., 25(1), 23-30. https://doi.org/10.1016/j.ijmst.2014.11.007.   DOI
28 Pan, Q.J. and Dias, D. (2016), "The effect of pore water pressure on tunnel face stability", Int. J. Numer. Anal. Meth. Geomech., 40(15), 2123-2136. https://doi.org/10.1002/nag.2528.   DOI
29 Perreault, L., Bernier, J., Bobee, B. and Parent, E. (2000), "Bayesian change-point analysis in hydrometeorological time series", J. Hydrol., 235(3-4), 221-241. https://doi.org/10.1016/S0022-1694(00)00270-5.   DOI
30 Qin, C.B. and Chian, S.C. (2017), "2D and 3D stability analysis of tunnel roof collapse in stratified rock: A kinematic approach", Int. J. Rock Mech. Min. Sci., 100, 269-277. https://doi.org/10.1016/j.ijrmms.2017.10.027.   DOI
31 Senent, S., Mollon, G. and Jimenez, R. (2013), "Tunnel face stability in heavily fractured rock masses that follow the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 60, 440-451. https://doi.org/10.1016/j.ijrmms.2013.01.004.   DOI
32 Shi, S.S., Li, S.C., Li, L.P., Zhou, Z.Q. and Wang, J. (2014), "Advance optimized classification and application of surrounding rock based on fuzzy analytic hierarchy process and Tunnel Seismic Prediction", Automat. Constr., 37(1), 217-222. https://doi.org/10.1016/j.autcon.2013.08.019.   DOI
33 Specht, D.F. (1990), "Probabilistic neural networks", Neural Networks, 3(1), 109-118. https://doi.org/10.1016/0893-6080(90)90049-Q.   DOI
34 Su, Y.H., Li, X., Zhao, M.H. and Xie, Z.Y. (2010), "Failure probability calculation for surrounding rock stability of tunnel considering random parameter distribution characteristics", Chin. J. Comput. Mech., 27(1), 120-126.
35 Tian, M., Li, D.Q., Cao, Z.J., Phoon, K.K. and Wang, Y. (2016), "Bayesian identification of random field model using indirect test data", Eng. Geol., 210, 197-211. https://doi.org/10.1016/j.enggeo.2016.05.013.   DOI