Browse > Article
http://dx.doi.org/10.12989/gae.2015.8.5.741

Collapse mechanism for deep tunnel subjected to seepage force in layered soils  

Yang, X.L. (School of Civil Engineering, Central South University)
Yan, R.M. (School of Civil Engineering, Central South University)
Publication Information
Geomechanics and Engineering / v.8, no.5, 2015 , pp. 741-756 More about this Journal
Abstract
The prediction of impending collapse of deep tunnel is one of the most difficult problems. Collapse mechanism of deep tunnel in layered soils is derived using a new curved failure mechanism within the framework of upper bound theorem, and effects of seepage forces are considered. Nonlinear failure criterion is adopted in the present analysis, and the possible collapse shape of deep tunnel in the layered soils is discussed in this paper. In the layered soils, the internal energy dissipations along velocity discontinuity are calculated, and the external work rates are produced by weight, seepage forces and supporting pressure. With upper bound theorem of limit analysis, two different curve functions are proposed for the two different soil stratums. The specific shape of collapse surface is discussed, using the proposed curve functions. Effects of nonlinear coefficient, initial cohesion, pore water pressure and unit weight on potential collapse are analyzed. According to the numerical results, with the nonlinear coefficient increase, the shape of collapse block will increase. With initial cohesion of the upper soil increase, the shape of failure block will be flat, and with the lower soil improving, the size of collapsing will be large. Furthermore, the shape of collapsing will decrease with the unit weight decrease.
Keywords
collapse mechanism; layered soils; nonlinear criterion; seepage force; upper bound;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Feng, K., He, C., Zhou, J.M. and Zhang, Z. (2012), "Model test on impact of surrounding rock deterioration on segmental lining structure for underwater shield tunnel with large cross-section", Procedia Environ. Sci., 12, 891-898.   DOI
2 Fraldi, M. and Guarracino, F. (2009), "Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 46(4), 665-673.   DOI   ScienceOn
3 Fraldi, M. and Guarracino, F. (2010), "Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections", Int. J. Solid. Struct., 47(2), 216-223.   DOI   ScienceOn
4 Fraldi, M. and Guarracino, F. (2011), "Evaluation of impending collapse in circular tunnels by analytical and numerical approaches", Tunn. Undergr. Space Technol., 26(4), 507-516.   DOI
5 Fraldi, M. and Guarracino, F. (2012), "Limit analysis of progressive tunnel failure of tunnels in Hoek-Brown rock masses", Int. J. Rock Mech. Min. Sci., 50, 170-173.   DOI
6 Leca, E. and Dormieux, L. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material", Geotechnique, 40(4), 581-606.   DOI
7 Huang, F.M., Wang, M.S., Tan, Z.S. and Wang, X.Y. (2010), "Analytical solutions for steady seepage into an underwater circular tunnel", Tunn. Undergr. Space Technol., 25(4), 391-396.   DOI
8 Indraratna, B., Oliveira, D.A., Brown, E.T., and Assis, A.P. (2010), "Effect of soil-infilled joints on the stability of rock wedges formed in a tunnel roof", Int. J. Rock Mech. Min. Sci., 47(5), 739-751.   DOI
9 Mollon, G., Dias, D. and Soubra, A.H. (2010), "Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology", J. Geotech. Geoenviron. Eng., 135(9), 1314-1325.   DOI
10 Saada, Z., Maghous, S. and Garnier, D. (2012), "Stability analysis of rock slopes subjected to seepage forces using the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 55(1), 45-54.
11 Soubra, A.H. (2000), "Three-dimensional face stability analysis of shallow circular tunnels", Proceedings of the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, November, pp. 19-24.
12 Subrin, D. and Wong, H. (2002), "Tunnel face stability in frictional material: a new 3D failure mechanism", Comptes Rendus Mecanique, 330(7), 513-519.   DOI
13 Sun, Z.B. and Qin, C.B. (2014), "Stability analysis for natural slope by kinematical approach", J. Central South Univ., 21(4), 1546-1553.   DOI
14 Zhu, H.H., Ho, N.L. and Yin, J.H. (2012), "An optical fibre monitoring system for evaluating the performance of a soil nailed slope", Smart Struct. Syst., Int .J., 9(5), 393-410.   DOI   ScienceOn
15 Wang, X.Y., Tan, Z.S., Wang, M.S., Zhang, M. and Huang, F.M. (2008), "Theoretical and experimental study of external water pressure on tunnel lining in controlled drainage under high water level", Tunn. Undergr. Space Technol., 23(5), 552-560.   DOI
16 Zhang, J.H. and Wang, C.Y. (2015), "Energy analysis of stability on shallow tunnels based on non-associated flow rule and non-linear failure criterion", J. Central South Univ., 22(3), 1070-1078.   DOI
17 Zhu, H.H., Yin, J.H. and Dong, J.H. (2010), "Physical modelling of sliding failure of concrete gravity dam under overloading condition", Geomech. Eng., Int. J., 2(2), 89-106.   DOI