• Title/Summary/Keyword: Tunnel Noise

Search Result 428, Processing Time 0.028 seconds

A Case Study on the Design of Railway Tunnel through section for under OO temple (OO 사찰 하부 터널통과 설계 사례)

  • Kim, Shin;Lee, Sung-Ki;Seo, Hyoung-Chul;Kwag, Jung-Yeol;Cho, Bong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.208-218
    • /
    • 2006
  • It is very important to evaluate predictable problems diversely such as stability of a tunnel and structures when tunnel is inevitably constructed in the area where is adjacent to a structure and low overburden. Double electrified railway design on the third section of Donghae-Nambu line studied in this paper has some problems mentioned above. So more careful works are required before construction. In this study, ground surrounding is composed of faults, fault zone and set back about 13m from a Buddhist temple located on the upper part of the tunnel. From these conditions, this case study presents proper methods considering ground condition, effects of blasting and civil petitions. It is tried to make the tunnel and Buddhist temple stable by analytical technique and analysis of existing cases. And design considering stability of tunnel and adjacent structure during operation is carried out as well. Especially, environmentally friendly railway tunnel which is appropriate to the local condition and surroundings is designed by minimizing noise and vibration that is able to occur during construction and train service. From now on, this study is helpful to better design in the case of tunnel design which has to consider civil petition.

  • PDF

Design and Construction Problems of Semi-Shield Method (SEMI-SHIELD 공법의 설계 및 시공상 문제점)

  • Kim, Jong-In;Jung, Sung-Nam;Park, Yeong-Geon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1275-1282
    • /
    • 2009
  • The tunnel excavations are used for construction of common utility tunnel, electric tunnel, communication line tunnel, water supply and public sewerage pile line in urban area. The trench cut methods were mainly used in the past, but now, tunneling method is more being used. The tunnel excavation method like as NATM, Messer-Shield, Semi-Shield Methods are being applied to small section tunnel in Korea. The actual construction results of seme-shield method are increasing due to simplified construction process and reduced noise and vibration. And also this method is being used frequently in waterway tunnel and construction of prevention flooding recently. The seme-shield method design guideline is absence except for electric line tunnel construction in Korea, because of the semi-shield method was developed in Europe and Japan. In the prescriptive design, engineer's subjects are tending to intervene, because of absence of standard and specification for details. Therefore, Design and Construction Problems of Semi-Shield Method were described and construction trouble was introduced for exam. These problem and construction troubles have to be examined thoroughly in advance.

  • PDF

Investigation into influence of sound absorption block on interior noise of high speed train in tunnel (터널 내부 도상 블록형 흡음재의 고속철도차량 내부 소음에 미치는 영향에 대한 고찰)

  • Lee, Sang-heon;Cheong, Cheolung;Lee, Song-June;Kim, Jae-Hwan;Son, Dong-Gi;Sim, Gyu-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.223-231
    • /
    • 2018
  • Recently, due to various environmental problems, blast tracks in tunnel are replaced with concrete tracks, but they have more adverse effects on noise than blast tracks so that additional noise measures are needed. Among these measures, sound-absorbing blocks start to be used due to its easy and quick installation. However, the performance of sound absorption blocks need to be verified under real environmental and operational conditions. In this paper, interior noise levels in KTX train cruising in Dalseong tunnel are measured before and after the installation of sound-absorbing blocks and the measured data are analyzed and compared. Additionally, noise reduction are estimated by modeling the high speed train, the tunnel and absorption blocks. Measurement devices and methods are used according to ISO 3381 and the equivalent sound pressure levels during the cruising time inside the tunnel are computed. In addition to overall SPLs(Sound Pressure Levels), 1/3-octave-band levels are also analyzed to account for the frequency characteristics of sound absorption and equipment noise in a cabin. In addition, to consider the effects of train cruising speeds and environmental conditions on the measurements, the measured data are corrected by using those measured during the train-passing through the tunnels located before and behind the Dalseong tunnel. Analysis of measured results showed that the maximum noise reduction of 6.8 dB (A) can be achieved for the local region where the sound-absorbing blocks are installed. Finally, through the comparison of predicted 1/3-octave band SPLs for the KTX interior noise with the measurements, the understanding of noise reduction mechanism due to sound-absorbing blocks is enhanced.

Study on the Prediction Evaluation of Inner Noise Characteristics in Standardization EMU (표준전동차 차내소음특성 예측평가기법 연구)

  • 박준서;김정태
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • Standardization EMU in comparison with the existing EMU has been largely changed the material and section profile of the structure as the Aluminium made. This study is analytically predicted the influence of inner noise in tunnel running when the above change is made.

  • PDF

Effect of Train Nose Shape on the High-Speed railway Tunnel Entry Compression Wave (고속열차의 선두부 형상이 터널 입구압력파에 미치는 영향)

  • 김희동;김태호;서태원
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.596-603
    • /
    • 1998
  • The entry compression wave, which is generated at the entrance of the tunnel, is almost always associated with the pressure transients in the tunnel as well as the impulse noise at the exit of the tunnel. It is highly required to design the train nose shape that can minimize such undesirable phenomena. The objective of the current work is to investigate the effects of the train nose shape on the entry compression wave. Numerical computations were applied to one-dimensional unsteady compressible flow in high-speed railway train/tunnel systems. A various shape of train noses were tested for a wide range of train speeds. The results showed that the strength of the entry compression wave is not influenced by the train nose shape, but the time variation of pressure in the entry compression wavefront is strongly related to the train nose shape. The current method of the characteristics was able to represent a desirable nose shape for various train speeds. Optimum nose shape was found to considerably reduce the maximum pressure gradient of the entry compression wave.

  • PDF

Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(1) - On the characteristics of Compression Wave - (고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(1) - 압축파의 특성에 대하여 -)

  • ;松尾一泰
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2686-2697
    • /
    • 1994
  • When a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. In order to estimate the magnitudes of the noises and to effectively minimize them, the characteristics of the compression wave propagating in a tunnel must be understood. In the present paper, the experimental and analytical investigations on the attenuation and distortion of the propagating compression waves were carried out using a model tunnel. This facility is a kind of open-ended shock tube with a fast-opening gate valve instead of a general diaphragm. One-dimensional flow model employed in the present study could appropriately predict the strength of the compression wave, Mach number and flow velocity induced by the compression wave. The experimental results show that the strength of a compression wave decreases with the distance from the tunnel entrance. The decreasing rate of the wave strength and pressure gradient in the wave is strongly dependent on the strength of the initial compression wave at the tunnel entrance.

Railway Noise: Current Status and Reduction Schemes (철도변 환경소음: 현황과대책)

  • Kim, Jeung T.;Kim, Tae M.;Son, Jeung G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.563-563
    • /
    • 2013
  • Railway noise has been a social issues nowadays in our community. This paper discusses the environmental noise problem along railway lines. We overview the noise level and noise exposed populations due to conventional and high speed train operation at first. Then we introduce variety of noise reduction schemes to protect the community based on an engineering approach. Some applicationcases to reduce the noise will be demonstrated. Finally, we propose the noise barrier tunnel as a tool of a generic solution to reduce the community noise along railway lines.

  • PDF

Effectiveness and Validity of Noise Barrier Tunnels on Main Line Roads (간선도로 방음터널의 효과와 타당성)

  • Oh, Yang-Ki;Kim, Ha-Gun;Kim, Myung-Jun;Jeong, Dae-Up;Kwon, Sung-An
    • KIEAE Journal
    • /
    • v.2 no.1
    • /
    • pp.55-61
    • /
    • 2002
  • It seems inevitable for residential buildings to be high-rise and allocated near traffic roads due to the overcrowding in urban area. Acoustic environment in those residential buildings has been seriously deteriorated by the increase of traffic vehicles. Commonly used sound barriers have a limitation in controlling noise diffracted over the boundary of a sound barrier and hence are not effective to attenuate noise especially for the residential units in high level. The use of an enclosed noise barrier can be an alternative to supplement the defects of conventional noise barriers. The present work aims at providing useful data in designing enclosed noise barriers for residential areas adjacent to roads. Number of field measurements for various noise barriers and enclosed noise barriers were carried out and the results were discussed with relation to the proper design of enclosed noise barriers.