• 제목/요약/키워드: Tuning behavior

검색결과 91건 처리시간 0.02초

자동차 충격흡수장치용 감쇠력 조정 전자제어장치 연구 (A Study of Electrical Control Kit for Damping Force of Automotive Shock Absorber)

  • 손일선;이정구
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-6
    • /
    • 2008
  • The performance of shock absorber is directly related to the car behavior and performance, both for handling and comfort. Most of compact car are assembled the passive shock absorber for cost effect but some of compact driver want better performance of shock absorber than standard parts. Therefore, they want the semi-active suspension control system instead of standard damper system. But they only can change the mechanical damping control shock absorber at A/S market. The mechanical damping control shack absorber can not vary the damping force in driving condition so they do not satisfy the mechanical damping control shock absorber system. In this study, electrically damping force controlled shock absorber system is developed based on the mechanical damping force control damper system. This system can vary damping force by switch on dashboard in driving condition. And, this system can satisfy the requirement of tuning market. Therefore, it is expected the system to show the engineering capability of korean damper company and to increase export market share to oversea damper market.

연속 파장 가변시 현상론적인 비 선형 이득 포화 효과가 다전극 DBR 레이저의 변조 특성에 미치는 영향

  • 이석;박노헌;박홍이;최원준;한일기;이정일;강광남
    • 한국광학회지
    • /
    • 제4권3호
    • /
    • pp.301-308
    • /
    • 1993
  • 현상론적인 비 선형 이득 포화 효과가 연속 파장 가변시 다전극 DBR 레이저의 변조 특성에 미치는 영향을 이론적으로 분석하였다. 수동 부분에 전류 주입의 증가에 따라 FM 효율, 3dB 대역폭, 공명 주파수는 감소하지만, flat FM응답은 증가한다. 비 선형 이득 포화 효과는 FM/IM응답, 3dB 대역폭, 공명 주파수, chirping-to-modulation-power ratio 등 변조 특성에 커다란 영향을 미치지만, 연속 파장 가변에 의한 변조 특성에는 영향을 미치지 않는다.

  • PDF

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

사판식 구동모터에 장착된 밸브의 설계변수 민감도 해석 사례 (Shape Design Sensitivity Analysis Case of the Valves installed in the Hydraulic Driving Motor)

  • 노대경;장주섭
    • 한국시뮬레이션학회논문지
    • /
    • 제22권3호
    • /
    • pp.81-87
    • /
    • 2013
  • 본 논문은 컴퓨터 해석프로그램인 SimulationX를 이용하여 굴삭기 주행모터의 내부에서 발생하는 서지압력의 저감 방법에 대하여 분석하는 연구이다. 설계민감도 해석을 통하여 설계상의 문제점을 파악하고 해결책에 접근하는 방법을 다룬다. 진행순서는 다음과 같다. 우선 현재 설계 된 주행모터에 장착된 밸브들의 동적거동을 분석하여 설계의 문제점을 찾아낸다. 그 후 많은 설계변수들 중 동적성능향상에 민감하다고 판단되는 변수를 도출하고 설계치수를 조정하여 동적성능 안정화의 경향을 살펴본다. 마지막으로 민감한 변수가 다수 일 경우 변수조합을 통해 효과적인 튜닝방법을 제안한다.

A New Resonance Prediction Method of Fabry-Perot Cavity (FPC) Antennas Enclosed with Metallic Side Walls

  • Kim, Dong-Ho;Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.220-226
    • /
    • 2011
  • We have proposed a new method to accurately predict the resonance of Fabry-Perot Cavity (FPC) antennas enclosed with conducting side walls. When lateral directions of an FPC antenna are not blocked with metallic walls, the conventional technique is accurate enough to predict the resonance of the FPC antenna. However, when the FPC antenna has side walls, especially for case with only a short distance between the walls, the conventional prediction method yields an inaccurate result, inevitably requiring a tedious, time-consuming tuning process to determine the correct resonant height to provide the maximum antenna gain in a target frequency band using three-dimensional full-wave computer simulations. To solve that problem, we have proposed a new resonance prediction method to provide a more accurate resonant height calculation of FPC antennas by using the well-known resonance behavior of a rectangular resonant cavity. For a more physically insightful explanation of the new prediction formula, we have reinvestigated our proposal using a wave propagation characteristic in a hollow rectangular waveguide, which clearly confirms our approach. By applying the proposed technique to an FPC antenna covered with a partially reflecting superstrate consisting of continuously tapered meander loops, we have proved that our method is very accurate and readily applicable to various types of FPC antennas with lateral walls. Experimental result confirms the validness of our approach.

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • 한국재료학회지
    • /
    • 제31권8호
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Metaheuristic-designed systems for simultaneous simulation of thermal loads of building

  • Lin, Chang;Wang, Junsong
    • Smart Structures and Systems
    • /
    • 제29권5호
    • /
    • pp.677-691
    • /
    • 2022
  • Water cycle algorithm (WCA) has been a very effective optimization technique for complex engineering problems. This study employs the WCA for simultaneous prediction of heating load (LH) and cooling load (LC) in residential buildings. This algorithm is responsible for optimally tuning a neural network (NN). Utilizing 614 records, the behavior of the LH and LC is explored and the captured knowledge is then used to predict for 154 unanalyzed building conditions. Since the WCA is a population-based algorithm, different numbers of the searching agents were tested to find the most optimum configuration. It was observed that the best solution is discovered by 500 agents. A comparison with five newly-developed benchmark optimizers, namely equilibrium optimizer (EO), multi-tracker optimization algorithm (MTOA), slime mould algorithm (SMA), multi-verse optimizer (MVO), and electromagnetic field optimization (EFO) revealed that the WCANN predicts the desired parameters with considerably larger accuracy. Obtained root mean square errors (1.4866, 2.1296, 2.8279, 2.5727, 2.5337, and 2.3029 for the LH and 2.1767, 2.6459, 3.1821, 2.9732, 2.9616, and 2.6890 for the LC) indicated that the most reliable prediction was presented by the proposed model. The EFONN, however, provided a more time-effective solution. Lastly, an explicit predictive formula was elicited from the WCANN.

A hybrid algorithm for classifying rock joints based on improved artificial bee colony and fuzzy C-means clustering algorithm

  • Ji, Duofa;Lei, Weidong;Chen, Wenqin
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.353-364
    • /
    • 2022
  • This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.

건축구조물의 2방향 진동제어를 위한 동조액체질량감쇠기 (A Tuned Liquid Mass Damper(TLMD) for Controlling Bi-directional Responses of a Building Structure)

  • 허재성;박은천;이상현;이성경;김홍진;조봉호;조지성;김동영;민경원
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.345-355
    • /
    • 2008
  • This paper presents a design of a tuned liquid mass damper(TLMD) for controlling bi-directional response of high-rise building structure subjected to windload. The proposed damper behaves as a tuned mass damper(TMD) of which mass is regarded as the mass of a tuned liquid column damper(TLCD) and the case wall of the TLCD itself in one direction and the TLCD in the other direction. Because the proposed device has coupled design parameter along two orthogonal directions, it is very important to select designing components by optimal fine tuning. In the designing TLMD, for easy maintenance, the rubber-bearing with small springs was applied in TMD direction. In this study, the Songdo New City Tower 1A in Korea, which has been designed and constructed two TLCDs in order to control bi-directional response, was chosen as the model building structure. The results of rotation test proved the effectiveness of bi-directional behavior of TLMD.

형상기억합금 비틀림 튜브 작동기의 거동 해석 (Analyses of Behaviors of a Shape-Memory-Alloy Torque Tube Actuator)

  • 김준형;김철
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.1083-1089
    • /
    • 2010
  • 형상기억합금은 지능형 재료와 구조물에 널리 쓰인다. 큰 힘과 변위를 발생시키는 것이 특징이며 작동기, 소음 및 진동감쇠, 동역학적 튜닝, 형상의 변형 제어 등의 다양한 분야에 응용될 수 있다. 본 논문에 서는 형상기억합금튜브와 초탄성 스프링으로 구성된 형상기억합금 비틀림 작동기를 제안하였고 각각의 거동 특성을 알아보았다. 열전달 해석을 통해 저항열과 히터의 열을 동시에 형상기억합금튜브에 가하면 작동기의 성능을 더 향상시킬 수 있음을 확인하였다. 접촉 해석으로는 실제 작동기의 거동을 시뮬레이션하였고 정상적으로 작동함을 알 수 있었다. 3 차원 형상기억합금의 거동을 표현하기 위해 비선형 구성방정식을 유한요소 법으로 풀고 ABAQUS 의 U-MAT 기능을 이용하여 비선형 해석을 수행하였다.