• Title/Summary/Keyword: Tuning Parameters

Search Result 720, Processing Time 0.029 seconds

A Study on the PID controller auto-tuning using neural network learning (신경망 학습을 이용한 PID제어기 자동동조에 관한 연구)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.458-460
    • /
    • 2009
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF

A Study on the Error Analysis of the Numerical Solution using Inverse Method (역해석 기법을 이용한 수치해의 오차 분석 연구)

  • Yang, Sung-Wook;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.21-27
    • /
    • 2008
  • An inverse method is introduced to construct the problem for the error analysis of the numerical solution of initial value problem. These problems constructed through this method have a known exact solution, even though analytical solutions are generally not obtainable. The process leading to the exact solution makes use of an initially available approximate numerical solution. A smooth interpolation of the approximate solution is forced to exactly satisfy the differential equation by analytically deriving a small forcing function to absorb all of the errors in the interpolated approximate solution. Using this special case exact solution, it is possible to investigate the relationship between global errors of a candidate numerical solution process and the associated tuning parameters for a given problem. Under the assumption that the original differential equation is well-posed with respect to the small perturbations, we thereby obtain valuable information about the optimal choice of the tuning parameters and the achievable accuracy of the numerical solution.

  • PDF

Real-Time Control of DC Sevo Motor with Variable Load Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Kim, Sang-Hoon;Chung, In-Suk;Kang, Young-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.107-113
    • /
    • 2001
  • This paper deals with speed control of DC servo motor using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm. Conventionally a PID controller has been used in the industrial control. But a PID controller should produce suitable parameters for each system. Also, variables of the PID controller should be changed according to environments, disturbances and loads. In this paper described by a experiment that contained a method using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm, we developed speed characteristics of a DC servo motor on variable loads. The parameters of the controller are determined by neural network performed on on-line system after training the neural network on off-line system.

  • PDF

A Study on the Auto-Tuning of a PID Controller using Artificial Neural Network (인공신경망에 의한 PID 제어기 자동동조에 관한 연구)

  • 정종대
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.36-42
    • /
    • 1996
  • In this paper, we proposed a PID controller, which could control unknown plants using Artificial Neural Network(ANN) for auto-tuning of the PID parameters. In the proposed algorithm, the parameters of the controller were adjusted to reduce the error of the controlled plant. In this process, the sensitivity between input and output of the unknown plant was needed. So, in order to obtain this sensitivity, the ANN's learnig ability was used. Computer simualtions were performed for the regulation problems, and the results were compared with those of Ziegler-Nichols PID controller. As a result, it was shown that the proposed algorithm outperformed Ziegler-Nichols controller in rise time, overshoot, undershoot, and setting time.

  • PDF

Quick Detection of Variance Change Point for I.I.D. Data

  • Park, Kyoung-Hwa;Kim, Tae-Yoon;Song, Gyu-Moon;Choi, Jung-Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.173-183
    • /
    • 2005
  • This paper studies quick detection of variance change point for iid data. For development of sensitive and adaptive variance change point detector, moving variance ratio is employed as a variance ratio estimator. It is shown that selection of tuning parameters of detector, (i.e., information and lag tuning parameters) is critical for detector to achieve desirable sensitivity and adaptiveness. Interestingly our simulation result reveals limitations of the commonly used change ratio against the previous day. Our results will provide useful insight when the detector is applied to time series data.

  • PDF

An Auto-tuning of PID Controller using Fuzzy Performance Measure and Neural Network for Equipment System (전력설비시스템을 위한 퍼지 평가함수와 신경회로망을 사용한 PID제어기의 자동동조)

  • ;李壽欽
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.195-195
    • /
    • 1999
  • This paper is Proposed a new method to deal with the optimized auto-tuning for the PID controller which is used to the process-control in various fields. First of all, in this method, 1st order delay system with dead time which is modelled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nickels method. So we can find the parameters of PID controller so as to minimize the fuzzy criterion function which includes the maximum overshoot, damping ratio, rising time and settling time. Finally, after studying the parameters of PID controller by Backpropagation of Neural-Network, when we give new K, L, T values to Neural-Network, the optimized parameter of PID controller is found by Neural-Network Program.

$H_\infty$ Optimal tuning of Power System Stabilizer using Genetic Algorithm (유전알고리즘을 이용한 전력계통 안정화 장치의 강인한 $H_\infty$최적 튜닝)

  • Jeong, Hyeong-Hwan;Lee, Jun-Tak;Lee, Jeong-Pil;Han, Gil-Man
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.85-94
    • /
    • 2000
  • In this paper, a robust H$\infty$ optimal tuning problem of a structure-specified PSS is investigated for power systems with parameter variation and disturbance uncertainties. Genetic algorithm is employed for optimization method of PSS parameters. The objective function of the optimization problem is the H$\infty$-norm of a closed loop system. The constraint of the optimization problem are based on the stability of the controller, limits on the values of the parameters and the desired damping of the dominant oscillation mode. It is shown that the proposed H$\infty$ PSS tuned using genetic algorithm is more robust than conventional PSS.

  • PDF

Finite element analysis of piezoelectric structures incorporating shunt damping (압전 션트 감쇠된 구조물의 유한요소해석)

  • 김재환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.470-477
    • /
    • 2002
  • Possibility of passive piezoelectric damping based on a new shunting parameter estimation method is studied using finite element analysis. The adopted tuning method is based electrical impedance that is found at piezoelectric device and the optimal criterion for maximizing dissipated energy at the shunt circuit. Full three dimensional finite element model is used for piezoelectric devices with cantilever plate structure and shunt electronic circuit is taken into account in the model. Electrical impedance is calculated at the piezoelectric device, which represents the structural behavior in terms of electrical field, and equivalent electrical circuit parameters for the first mode are extracted using PRAP (Piezoelectric Resonance Analysis Program). After the shunt circuit is connected to the equivalent circuit for the first mode, the shunt parameters are optimally decided based on the maximizing dissipated energy criterion. Since this tuning method is based on electrical impedance calculated at piezoelectric device, multi-mode passive piezoelectric damping can be implemented for arbitrary shaped structures.

  • PDF

Pole-Placement Self-Tuning Control for Robot Manipulators in Task Coordinates (작업좌표에서 로보트 매니퓰레어터에 대한 극점배치 자기동조 제어)

  • 양태규;이상효
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.247-255
    • /
    • 1989
  • This paper proposes an error model with integral action and a pole-place-ment self-tuning controller for robot manipulators in task coordinates. The controller can reject the offset due to any load disturbance without a detailed description of the robot dynamics. The error model parameters are estimated by the recursive least square identification algorithms, and controller parameters are determined by the pole-placement method. A computer simulation study has been conducted to demonstrate the performance of the proposed control system in task coordinates for a 3-joint and 2-link spatial robot manipulator with payload.

A Tuning Method for I-PD Controller Using Performance Index (평가함수를 이용한 I-PD콘트롤러의 튜닝)

  • 유항열;이정국;이금원;이준모
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.169-172
    • /
    • 2003
  • PID control has been well used for several decade. For PID algorithm, some tuning methods are used and with these parameters, control system is designed. But in some cases various kinds of performance are needed, so variable type of performance index must be utilized so that the designed control system meets the conditions. This paper presents some linear combinational type of performance index and with numerical methods, the PID parameters are obtained. Moreover I-PD type controller is used so that this two degree of freedom controller may give more desirable output characteristics. Simulations are done with MATLAB m file and mdl files.

  • PDF