• Title/Summary/Keyword: Tuning Fork

Search Result 47, Processing Time 0.028 seconds

Micro-cantilever sensor using a tuning fork (Tuning fork형 micro-cantilever sensor)

  • Kim Choong Hyun;Ahn Hyo-Sok
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.87-90
    • /
    • 2005
  • An experimental investigation of the basic characteristics of a micro-cantilever sensor was performed by inspecting the amplitude and frequency characteristics using a commercial tuning fork. Application of acetone and ethanol with a volume of $1 {\mu}l$ on the tine of a vibrating tuning fork cause immediate response in its amplitude and frequency. It has shown that the tuning fork has ability to recognize a chemical agent with high sensitivity.

  • PDF

A Design for a Modified Circular Slot Antenna with a Fork-like Tuning Stub for UWB Operations

  • Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2016
  • This paper proposes and experimentally tests a modified circular slot antenna fed by a fork-like tuning stub for ultra-wideband (UWB) operation. The proposed antenna consists of a modified circular slot model and fork-like tuning stub. The proposed antenna is printed on a 34.0 mm × 30.0 mm FR4 substrate with thickness of 1.0 mm and relative permittivity of 4.4. The effect of various parameters of the circular slot and fork-like tuning stub is investigated for UWB operation. The modified circular slot and fork-like tuning stub are fabricated on the substrate to achieve wideband operation and good impedance matching. Experimental results demonstrated that the measured return loss exhibits an acceptable agreement with the simulated return loss and satisfies the -10 dB impedance bandwidth requirement while simultaneously covering the UWB bands. In addition, the proposed antenna shows good radiation characteristics and gains in the UWB bands.

Robust Optical Detection Method for the Vibrational Mode of a Tuning Fork Crystal Oscillator

  • Choi, Hyo-Seung;Song, Sang-Hun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.93-95
    • /
    • 2015
  • We present an optical detection method for the fundamental vibrational mode of a tuning fork crystal oscillator in air. A focused He/Ne laser beam is directed onto the edge of one vibrating tine of the tuning fork; its vibrating motion chops the incoming laser beam and modulates the intensity. The beam with modulated intensity is then detected and converted to an electrical signal by a high-speed photo-detector. This electrical signal is a sinusoid at the resonant frequency of the tuning fork vibration, which is 32.76 kHz. Our scheme is robust enough that the sinusoidal signal is detectable at up to $40^{\circ}$ of rotation of the tuning fork.

Measurement of Liquid Density using Tuning Fork (튜닝포크를 이용한 액체밀도의 계측)

  • Kim, Choong-Hyun;Lee, Yong-Bok;Lee, Sung-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-91
    • /
    • 2007
  • A sensor using quartz toning fork is presented for measuring liquid density. It consists of a PZT plate as an actuator for piezoelectric excitation and a quartz tuning fork as a sensor for resonant frequency detection. The resonant frequency is determined from the sensing voltage measured in tuning fork when the excitation frequencies of PZT actuator are swept around the resonant frequencies of tuning fork. The resonant frequency determined the liquid density. The density values of three kinds of organic solvents are measured and compared with the standard values. The experimental results are in agreement with the standard values and the maximum standard deviation is less than 9%.

Tuning Fork Analysis using FEM and BEM (FEM과 BEM을 사용한 소리굽쇠 분석)

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Park, Yeun-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.401.2-401
    • /
    • 2002
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the change of the modal frequencies was examined with the variation of the tuning fork length and width. (omitted)

  • PDF

Frequency Characteristics of Micro-cantilever Sensor using Tuning Fork (튜닝포크형 미소 캔틸레버 센서의 주파수 특성)

  • Kim Choong Hyun;Ahn Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.35-40
    • /
    • 2005
  • An experimental Investigation of the basic characteristics of a micro-cantilever sensor was performed by inspecting the amplitude and frequency characteristics of a commercial tuning fork (TF). Application of acetone and ethanol with a volume of $1{\mu}l$ on the tine of a vibrating tuning fork causes immediate response in its amplitude and frequency characteristics. It has been shown that the tuning fork has ability to recognize a chemical agent with high sensitivity. The theoretical sensitivity of mass loading is in the range of $\~0.1Hz/ng$. Quartz tuning forks are routinely made using standard microfabrication process, thus suggesting the possibility of microfabrication of micro quart sensors.

Tuning Fork Analysis using FEM and BEM (FEM과 BEM을 사용한 소리 굽쇠 분석)

  • Jang, Soon-Suck;Lee, Je-Hyeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1049-1053
    • /
    • 2002
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the change of the modal frequencies was examined with the variation of the tuning fork length and width. Analytical model equations were derived from the numerically relating results of the modal frequency-tuning fork length by approximating minimization. Finally the BEM was used for the sound pressure field calculation from the structural displacement data.

  • PDF

Tuning Fork Modal Analysis and Sound Pressure Calculation Using FEM and BEM

  • Jarng, Soon-Suck;Lee, Je-Hyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.112-118
    • /
    • 2002
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the trend of the change of the modal frequencies was examined with the variation of the tuning fork length and width. An formula for the natural frequencies-tuning fork length relationship were derived from the numerical analysis results. Finally the BEM was used for the sound pressure field calculation from the structural displacement data.

Dynamic Analysis of Tuning-Fork Gyroscope (음차자이로의 동적특성 연구)

  • 곽문규;한상보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.247-252
    • /
    • 2002
  • A rate gyroscope has been used popularly to measure the angular motion of a given vehicle using a symmetric rotor spinning rapidly about its symmetry axis. Since the rapid rotation is required in this type of gyroscope, the motor has been used to make the rotor spin, so that it results in a heavy configuration. The tuning-fork gyroscope has been developed to avoid this problem, which utilizes a coriolis coupling term and vibration about one axis. Because of the coriolis effect, the vibration of one axis is transferred to other axis when the angular motion along the vibrating axis is given to the system. The concept of a tuning-fork gyroscope was recently realized using MEMS techniques. However, the dynamic characteristics of the tuning-fork gyroscope has not been discussed in detail. In this study, we derived the equations of motion for the tuning-fork type gyroscope using the energy approach and investigated the dynamic characteristics by means of numerical analysis.

  • PDF

TUNING Fork Analysis and Design by FEM AND BEM (FEM과 BEM을 사용한 소리굽쇠 특성 해석 및 설계)

  • Jarng, Soon-Suck;Kwon, You-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1201-1204
    • /
    • 2003
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method(FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the trend of the change of the modal frequencies was examined with the variation of the tuning fork length and width. An formula for the natural frequencies-tuning fork length relationship were derived from the numerical analysis results. Finally the BEM was used fur the sound pressure field calculation from the structural displacement data.

  • PDF