• 제목/요약/키워드: Tuning Effect

검색결과 254건 처리시간 0.029초

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

Analysis of system dynamic influences in robotic actuators with variable stiffness

  • Beckerle, Philipp;Wojtusch, Janis;Rinderknecht, Stephan;von Stryk, Oskar
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.711-730
    • /
    • 2014
  • In this paper the system dynamic influences in actuators with variable stiffness as contemporary used in robotics for safety and efficiency reasons are investigated. Therefore, different configurations of serial and parallel elasticities are modeled by dynamic equations and linearized transfer functions. The latter ones are used to identify the characteristic behavior of the different systems and to study the effect of the different elasticities. As such actuation concepts are often used to reach energy-efficient operation, a power consumption analysis of the configurations is performed. From the comparison of this with the system dynamics, strategies to select and control stiffness are derived. Those are based on matching the natural frequencies or antiresonance modes of the actuation system to the frequency of the trajectory. Results show that exclusive serial and parallel elasticity can minimize power consumption when tuning the system to the natural frequencies. Antiresonance modes are an additional possibility for stiffness control in the series elastic setup. Configurations combining both types of elasticities do not provide further advantages regarding power reduction but an input parallel elasticity might enable for more versatile stiffness selection. Yet, design and control effort increase in such solutions. Topologies incorporating output parallel elasticity showed not to be beneficial in the chosen example but might do so in specific applications.

적응단면기법을 이용한 뇌모형제작 (Fabrication of a Brain Model using the Adaptive Slicing Technique)

  • 염상원;엄태준;주영철;김승우;공용해;천인국;방재철
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.485-490
    • /
    • 2003
  • RP(Rapid Prototyping) has been used in the various industrial applications. This paper presents the optimization techniques fur fabricated 3D model design using RP machine for the medical field. Once the original brain model data are obtained from 2D slices of MRI/CT machine, the data can be modeled as an optimal ellipse. The objective of this study includes optimization of fabrication time and surface roughness using the adaptive slicing method. It can reduce fabrication time without losing surface roughness quality by accumulating the slices with variable thickness. According to the parameter tuning and synthesis of its effect, more suitable parameter values can be obtained by enhanced 3D brain model fabrication. Therefore, accurate 3D brain model fabricated by RP machine can enable a surgeon to perform pre-operation. to make a decision for the operation sequence and to perceive the 3D positions in prototype, before delicate operation of actual surgery.

자동차 충격흡수장치용 감쇠력 조정 전자제어장치 연구 (A Study of Electrical Control Kit for Damping Force of Automotive Shock Absorber)

  • 손일선;이정구
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-6
    • /
    • 2008
  • The performance of shock absorber is directly related to the car behavior and performance, both for handling and comfort. Most of compact car are assembled the passive shock absorber for cost effect but some of compact driver want better performance of shock absorber than standard parts. Therefore, they want the semi-active suspension control system instead of standard damper system. But they only can change the mechanical damping control shock absorber at A/S market. The mechanical damping control shack absorber can not vary the damping force in driving condition so they do not satisfy the mechanical damping control shock absorber system. In this study, electrically damping force controlled shock absorber system is developed based on the mechanical damping force control damper system. This system can vary damping force by switch on dashboard in driving condition. And, this system can satisfy the requirement of tuning market. Therefore, it is expected the system to show the engineering capability of korean damper company and to increase export market share to oversea damper market.

격자형 및 평형 구조를 가지는 박막공진 여파기에 관한 연구 (TFBAR Lattice and Balanced Type Filter Topologies)

  • 김건욱;구명권;육종관;박한규
    • 한국전자파학회논문지
    • /
    • 제13권10호
    • /
    • pp.1048-1053
    • /
    • 2002
  • 본 논문에서는 2 GHz 대역의 격자형 및 평형 구조를 가지는 박막공진 여파기를 설계, 제작하고 분석하였다. 단위공진자의 앞전물질은 AIN를 사용하였고, 전극도체로는 백금을 사용하였으며, 하부도체와 기판사이에 공기층이 있는 구조로 제작되었다. 제작된 여파기들은 크기가 작고 낮은 삽입손실과 격자형의 경우 약 15 dB, 평형 구조의 경우 약 30 dB 정도의 선택도를 가진다. 격자형 및 평형 구조는 사다리형 구조와 같이 실리콘 기판위에 제작되었으며, 사다리형 구조에 비해 넓은 대역폭을 가지며 평형구조의 경우 이외의 튜닝과정 없이 RF 여파기로 사용될 수 있다.

실수형 유전알고리즘을 이용한 전력계통 퍼지안정화장치의 설계 (Design of Fuzzy Power System Stabilizer using Real-coding Genetic Algorithm)

  • 이종규;권순일;김성신;박준호;황기현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.134-136
    • /
    • 2001
  • This paper describes the application of Fuzzy Power System Stabilizer(FPSS) for improving dynamic stability of power system. The Real-coding Genetic Algorithm(RGA) was applied to optimize gains of the inputs and outputs of the FPSS. The effectiveness of the proposed FPSS was demonstrated by simulation studies for single-machine infinite system. To show the superiority of the proposed FPSS, its performances were compared with those of Conventional Power System Stabilizer(CPSS) The proposed FPSS showed better control performances than the CPSS in three-phase ground fault under a normal load which was system condition in tuning FPSS. To show the robustness of the proposed FPSS, it was applied to damp the low frequency oscillations caused by disturbances such as three-phase ground fault under heavy and light load conditions. The proposed FPSS showed better performance than CPSS in terms of the settling time and damping effect for power system operation condition.

  • PDF

LC VCO using dual metal inductor in $0.18{\mu}m$ mixed signal CMOS process

  • Choi, Min-Seok;Jung, Young-Ho;Shin, Hyung-Cheol
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.503-504
    • /
    • 2006
  • This paper presents the design and fabrication of a LC voltage-controlled oscillator (VCO) using 1-poly 6-metal mixed signal CMOS process. To obtain the high-quality factor inductor in LC resonator, patterned-ground shields (PGS) is placed under the symmetric inductor to reduce the effect from image current of resistive Si substrate. Moreover, due to the incapability of using thick top metal layer of which the thickness is over $2{\mu}m$, as used in many RF CMOS process, the structure of dual-metal layer in which we make electrically short circuit between the top metal and the next metal below it by a great number of via materials along the metal traces is adopted. The circuit operated from 2.63 GHz to 3.09 GHz tuned by accumulation-mode MOS varactor. The corresponding tuning range was 460 MHz. The measured phase noise was -115 dBc/Hz @ 1MHz offset at 2.63 GHz carrier frequency and the current consumption and the corresponding power consumption were about 2.6 mA and 4.68 mW respectively.

  • PDF

비대칭 마그네트론 스퍼터링으로 합성된 비정질 탄소박막의 물리적, 구조적 특성에서 타겟 파워 밀도의 영향 (The effect of target power density on physical and structural properties of amorphous carbon films prepared by CFUBM sputtering)

  • 이재희;박용섭;박재욱;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.366-366
    • /
    • 2008
  • Amorphous carbon (a-C) is an interesting materials and its characteristics can be varied by tuning it $sp^3$ fractions. The $sp^3$ fraction in a-C films depends on the kinetic energy of the deposited carbon ions. In this work, a-C films was synthesized on Si(100) and glass substrates at room temperature by closed-field unbalanced magnetron (CFUBM) sputtering with the increase of graphite target power density. The structural and physical properties of films were investigated by using Raman spectroscopy, X-ray photoelectron spectrometer (XPS), nano- indentation, atomic force microscope (AFM) and contact-angle measurement. We obtained the good tribological properties, such as high hardness up to 26 GPa., friction coefficient lower than 0.1 and the smooth surface (rms roughness: 0.12 nm). The increase of the physical properties with the increase of target power density are related to the increase of nano-clusters in the carbon network. Also, these results might be due to the increase of the subplantation and resputtering by the increase of ions density in the plasma.

  • PDF

이중덕트를 이용한 U자형 감요수조의 주기조절 실험 연구 (Experimental Study on the Period Control of an U-tube Type Anti-Rolling Tank by using a Double Layer Duct)

  • 주영광;김용직;하영록
    • 대한조선학회논문집
    • /
    • 제52권2호
    • /
    • pp.135-142
    • /
    • 2015
  • The Anti-Rolling Tank(ART) has an advantage over the other roll stabilizing devices, when ship is staying and working at one site of sea. An important design point of ART is the tank tuning, that is, matching the tank natural period to the ship's roll natural period. Since the load condition and consequently the roll natural period of ship is to be changed widely, the natural period of ART also has to be changed widely. In case of the existing U-tube type ART with a single layer duct, the tank natural period can be changed in a relatively narrow range. This paper suggests a new U-tube type ART system using a double layer duct to enable wide change of ART natural period. Through the roll experiments performed in regular beam waves for a box-type model ship, it is shown that the double layer duct ART has about two times wider period range and a better reducing effect of roll magnitude than the single layer duct ART.

Vertically-Aligned Nanowire Arrays for Cellular Interfaces

  • 김성민;이세영;강동희;윤명한
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.90.2-90.2
    • /
    • 2013
  • Vertically-aligned silicon nanostructure arrays (SNAs) have been drawing much attention due to their useful electrical properties, large surface area, and quantum confinement effect. SNAs are typically fabricated by chemical vapor deposition, reactive ion etching, or wet chemical etching. Recently, metal-assisted chemical etching process, which is relatively simple and cost-effective, in combination with nanosphere lithography was recently demonstrated for vertical SNA fabrication with controlled SNA diameters, lengths, and densities. However, this method exhibits limitations in terms of large-area preparation of unperiodic nanostructures and SNA geometry tuning independent of inter-structure separation. In this work, we introduced the layerby- layer deposition of polyelectrolytes for holding uniformly dispersed polystyrene beads as mask and demonstrated the fabrication of well-dispersed vertical SNAs with controlled geometric parameters on large substrates. Additionally, we present a new means of building in vitro neuronal networks using vertical nanowire arrays. Primary culture of rat hippocampal neurons were deposited on the bare and conducting polymer-coated SNAs and maintained for several weeks while their viability remains for several weeks. Combined with the recently-developed transfection method via nanowire internalization, the patterned vertical nanostructures will contribute to understanding how synaptic connectivity and site-specific perturbation will affect global neuronal network function in an extant in vitro neuronal circuit.

  • PDF