• Title/Summary/Keyword: Tungsten Carbide Tool

Search Result 81, Processing Time 0.023 seconds

Micro Hole Machining for Ceramics ($Al_2O_3$) Using Ultrasonic Vibration (초음파 진동을 이용한 세라믹 소재의 마이크로 홀 가공)

  • 박성준;이봉구;최헌종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2004
  • Ultrasonic machining is a non-thermal, non-chemical, md non-electorial material removal process, and thus results in minimum modifications in mechanical properties of the brittle material during the process. Also, ultrasonic machining is a non-contact process that utilize ultrasonic vibration to impact a brittle material. In this research characteristics of micro-hole machining for brittle materials by ultrasonic machining(USM) process have been investigated. And the effect of ultrasonic vibration on the machining conditions is analyzed when machining fir non-conductive brittle materials using tungsten carbide tools with a view to improve form and machining accuracy.

Influence of fixed pressure on the machining accuracy of inner diameter of hollow shaft (고정압이 중공축 내경의 가공정밀도에 미치는 영향)

  • Jeon, Young-Seog;Jang, Sung-Min;Kang, Shin-Gil
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.381-387
    • /
    • 2010
  • This paper presents a study of the influence of fixed pressure in turning. The effect of roundness error and diameter deformation were studied with respect to the fixed pressure applied inside the cylindrical work piece made by boring tool in CNC lathe. The boring tool used in this study is a tungsten carbide coated. The material of workpiece is SM45C and the machining method is dry cutting. Cutting conditions as cutting speed, feed rate and depth of cut are constant. Finally, the change of fixed pressure had influence on the roundness error and diameter deformation.

A Study of Characteristic correlation go after the variable of shear process design for Carbon Tool Steel (II) (탄소공구강의 전단설계 변수에 따른 특성 상관관계 연구 (II))

  • Ryu, Gi-Ryoung;Ro, Hyun-Cho;Song, Jae-Son;Park, Chun-dal;Youn, Il-chae
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • The sheet metal forming proceccing is very important and indispensable in the automotive industry because the accuracy of prsee worked parts is directly related to the automotive quality. But when making mold it is difficult and expensive to modify mold. mold design technology is a critical technology in press plastic working. When design the mold there are lots of variables in press plastic working according to worked material, mold materials, conditions of heat treatment, clearance and so on. Abrasion of mold depends on these kind of conditions and sheared surface which is crucial for quality of product also depends on them. In this study, we conduct research on abrasion loss of mold according to 8, 10 and 12% of clearance for thickness of 1.0mm of worked material out of mold design variables of the products whose worked materials are high carbon steel and carbon tool steel by a practical experiment and perform a comparative evaluation of difference of abrasion loss mold with the alloy tool steel (STD11) and Tungsten Carbide (WC).

  • PDF

Improvement in Mechanical Properties of Cryogenically Treated WC-5 wt% NbC Hard Materials Sintered by Pulsed Current Activated Sintering

  • Jeong Han Lee;Hyun Kuk Park;Jae Cheol Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.528-532
    • /
    • 2022
  • Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료의 가공기술에 관한 연구)

  • Lee Seok-Woo;Choi Heon-Jong;Yi Bong-Gu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Determination of Electrode Potential in Micro Electrochemical Machining of Stainless Steel (스테인리스강의 미세 전해 가공 시 전극 전위의 선정)

  • Park B.J.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1281-1284
    • /
    • 2005
  • In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. Generally, the stainless steel electrode corrodes, passivates or dissolves in the electrochemical cell according to the electrode potential. Therefore, the electrode must maintain stable potential. The stable electrode potentials of tool and workpiece were determined with the potentiodynamic polarization test and verified experimentally from the point of machining stability and machined surface quality.

  • PDF

The Optimization Analysis for the Selection of Cutting Parameters in Turning Operation

  • Hong, Min-Sung;Lian, Zhe-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2001
  • This paper has focused on the Optimization of the cutting parameters for urning operation based on the Taguchi method. Four cutting parameters. nemely, cutting speed, feed depth of cut and nose radius are optimized with consideration of the surface roughness. The design and analysis of experiments are conducted to study the performance characteristic. The effects of these parameters on the surface roughness have been investigated using signal-to-noise(S/N) ratio and analy-sis of variance(ANOVA). The experiments have been performed using coated tungsten carbide inserts without any cutting fluid. Experimental results illustrate the effectiveness of this approach.

  • PDF

An Evaluation of Factors on the Influence Roundness in Turning Based on the Taguchi Method (다구찌 방법에 기초한 선삭에서 진원도에 영향을 미치는 인자에 관한 평가)

  • Kang, Shin-Gil;Lee, Chang-Ho;Jang, Sung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The purpose of this study is to improve the roundness of CNC turning so that helps the operator to choose the right turning conditions to produce a product with the given parameters. This paper focuses on determining the optimal levels of machining factors for circular shaft with CNC turning. For this purpose, the optimization of factors is performed based on experimental design method. A design and analysis of experiments are conducted to study the effects of these factors on the roundness by using the SIN ratio, analysis of ANOVA, and F-test. Factors, namely, fixed pressure, wall thickness, depth of cut, and feed rate are optimized with consideration of the roundness. The boring tool used in this study is a tungsten carbide coated. The material of workpiece is Al6061 and the machining method is dry cutting.

A Study on the effect of cutting parameters in face turning based on the Taguchi method (다구찌 방법에 기초한 단면절삭에서 절삭파라미터 영향에 관한 연구)

  • 장성민;조명우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.111-116
    • /
    • 2003
  • In this paper, object of experiment is to study on the effect of cutting parameters to obtain optimal surface toughness in face turning. Surface roughness is significantly important to be high quality of parts produced by turning process. For this purpose, the optimization of cutting parameters for fan Owning operation is investigated applying the Taguchi method. An orthogonal array, signal-to-noise ratio, and the analysis of variance are employed to evaluate effect of cutting parameters fir face turning. Also confirmation tests were performed to make a comparison between the results predicted from the mentioned correlations and the theoretical results. Cutting experiment is performed without cutting fluid using coated tungsten carbide inserts about workpieces of SM45C.

  • PDF

A Study on the Prediction Model of Surface Roughness by the Orthogonal Design for Turning Process (선반작업에서 직교계획법을 이용한 표면 거칠기 예측모델에 관한 연구)

  • 홍민성;염철만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • This paper presents a study of surface roughness prediction model by orthogonal design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed depth of cut, and nose radius on surface roughness. An effect of interaction between two parameters on surface roughness has also been investigated. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in turning process is a method to estimate the effects of cutting parameters on sur-face roughness.

  • PDF