Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.12.528

Improvement in Mechanical Properties of Cryogenically Treated WC-5 wt% NbC Hard Materials Sintered by Pulsed Current Activated Sintering  

Jeong Han Lee (Automotive Materials and Components R&D Group, Korea Institute of Industrial Technology)
Hyun Kuk Park (Automotive Materials and Components R&D Group, Korea Institute of Industrial Technology)
Jae Cheol Park (Automotive Materials and Components R&D Group, Korea Institute of Industrial Technology)
Publication Information
Korean Journal of Materials Research / v.32, no.12, 2022 , pp. 528-532 More about this Journal
Abstract
Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.
Keywords
pulsed current activated sintering; tungsten carbide; niobium carbide; cryogenic treatment; hard materials;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. G. Hur, M. J. Shin and D. J. Kim, Met. Mater. Int., 24, 301 (2018).
2 S. G. Cha, S. H. Hong and B. K. Kim, Mater. Sci. Eng., A, 351, 31 (2006).   DOI
3 M. Eriksson, M. Radwan and Z. Shen, Int. J. Refract. Met. Hard Mater., 36, 31 (2013).
4 S. G. Huang, R. L. Liu, O. Van der Biest and J. Vleugels, Int. J. Refract. Met. Hard Mater., 26, 389 (2007).
5 S. Huang, L. Li, K. Vanmeensel and J. Vleugels, Int. J. Refract. Met. Hard Mater., 25, 417 (2007).
6 L. Lauter, R. Hochenauer, C. Buchegger and W. Lengauer, J. Alloys Compd., 675, 407 (2016).
7 E. Kaya and M. Ulutan, Met. Mater. Int., 23, 691 (2017).
8 N. S. Kalsi, R. Sehagal and V. S. Sharma, Adv. Mater. Res., 410, 267 (2011).
9 N. A. Ozbek, A. Cicek, M. Gullesin and O. Ozbek, Int. J. Mach. Tools Manuf., 86, 34 (2014).
10 J. Young and C. Ding, Meter. Sci. Eng., A, 528, 1735 (2011).
11 J. H. Lee, I. H. Oh and H. K. Park, Met. Mater. Int., 27, 3409 (2021).
12 R. D. Dukino and M. V. Swain, J. Am. Ceram. Soc., 75, 3299 (1992).