• Title/Summary/Keyword: Tungsten

Search Result 1,582, Processing Time 0.032 seconds

Surface Properties of Re-Ir Coating Thin Film on Tungsten Carbide Surface (Tungsten Carbide 표면에 코팅된 Re-Ir 박막의 표면 특성)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.219-223
    • /
    • 2011
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir films were prepared by multi-target sputtering with iridium, rhenium and chromium as the sources. Argon and nitrogen were inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having atomic percent of 3:7 and the Re-Ir thin films were formed with 240 nm thickness. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. Also, adhesion strength and coefficient friction of Re-Ir thin film were examined. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, abrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

Prediction of Impact Fracture for Tungsten Alloy Using the Mohr-Coulomb Fracture Model (Mohr-Coulomb 파단모델을 이용한 텅스텐 합금의 충격 파단 예측)

  • Noh, D.;Fazily, Piemaan;Yu, K.;Lee, S.;Ko, D.K.;Sung, M.J.;Huh, H.;Yoon, J.W.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.16-21
    • /
    • 2021
  • A new concept of ammunition without the use of explosive gunpowder has been recently studied, which achieves performance equal to or higher than that of high explosives. Frangible Armor Piercing (FAP) is one of the concepts, which utilizes a tungsten alloy penetrator specialized for fragmentation. To investigate the fracture behavior of the tungsten alloy penetrator, Taylor impact tests were conducted at various impact velocities. Additionally, finite element analysis was performed to predict the fracture behavior of the tungsten alloy. Compression tests were also carried out at six strain rates for dynamic material properties and the dynamic hardening behavior was successfully predicted with the Lim-Huh model. Finally, the Mohr-Coulomb fracture model based on the mean stress was adopted to predict impact failure in Taylor impact simulation. The analysis predicts the deformation and fracture behaviors of the tungsten alloy successfully.

Study on the Characteristic of Elastomer Composite Containing Tungsten Powder

  • Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.6-11
    • /
    • 2021
  • In order to develop an ultra-high-density elastomeric material for substitution of steel dynamic dampers, a new curing system and technique for high-loading of the filler were examined in this study. Mechanochemical modification of chloroprene rubber (MAH-g-CR) using an internal mixer was carried out with maleic anhydride (MAH) as a reactive monomer. The optimum amount of MAH was 10 phr and the efficient grafting of MAH on CR could be achieved at a mixing temperature of 100℃. After preparing MAH-g-CR, 50 mol% epoxidized natural rubber (ENR 50) was blended with MAH-g-CR to develop a "self-curable rubber blend system" via reaction between the functional groups of the elastomeric matrices without the curing agent and additives. The content of ENR 50 was fixed at 30 wt.% throughout evaluation of the curing behavior of the MAH-g-CR/ENR blend. Tungsten powder was added to the MAH-g-CR/ENR matrix up to 60 vol.% to obtain ultra-high-density, and the maximum density obtained was 7.57 g/㎤. Stable ts2 (scorch time) and t90 (90% cure time) could be obtained even when tungsten powder was incorporated up to 60 vol.%. In addition, the tensile strength and damping properties of MAH-g-CR/ENR containing 60 vol.% of tungsten were better than those of CR containing 60 vol.% of tungsten.

Evaluation of Tungsten Blended Filament Shields Made by 3D Printer in Radiography (일반촬영분야에서의 3D 프린터로 제작한 텅스텐 혼합 필라멘트 차폐체의 성능평가)

  • Yoon, Joon;Yoon, Myenog-Seong
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.615-621
    • /
    • 2021
  • In the medical field, radiation provides information for the diagnosis and treatment of diseases. As the use of radiation increases and the risk of exposure increases, interest in radiation protection is also rapidly increasing. Lead shielding material is mainly used, which has a risk of lead poisoning and absorption into the body. Tungsten mixed filament shielding sheets were fabricated with a size of 70 × 70 mm and a thickness of 1, 2, and 4 mm by using a 3D printer. In the general shooting experiment, the thickness of the shielding sheet is 1 ~ 5mm, the tube voltage is 60, 80, 100, 120 kVp and the tube current is 20, 40 mAs. In general photography, Tungsten showed better shielding rate compared to Brass, Copper, and Lead protective tools under all irradiation conditions, and in particular, Tungsten 5 mm showed 100% shielding rate. The 3D-printed tungsten mixed filament shielding is expected to be used as a new shield that can replace the existing lead protection tools as it shows a better shielding rate than the existing lead protection tools in Radiography.

Separation of Vanadium and Tungsten from Simulated Leach Solutions using Anion Exchange Resins (음이온교환 수지를 이용한 바나듐/텅스텐 혼합용액으로부터 바나듐/텅스텐 분리회수에 관한 연구)

  • Jong Hyuk Jeon;Hong In Kim;Jin Young Lee;Rajesh Kumar Jyothi
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.25-35
    • /
    • 2022
  • The adsorption/desorption behavior and separation conditions of vanadium and tungsten ions were investigated using a gel-type anion-exchange resin. In the adsorption experiment with the initial acidity of the solution, the adsorption rate of vanadium was remarkably low in strong acids and bases. Additionally, the adsorption rate of tungsten was low in a strong base. An increase in the reaction temperature increased the adsorption reaction rate and maximum adsorption. The effect of tungsten on the maximum adsorption was minimal. The adsorption isotherms of vanadium and tungsten on the ion-exchange resin were suitable for the Langmuir adsorption isotherms of both the ions. For tungsten, the adsorption isotherms of vanadium and tungsten were polyoxometalate. Both ion-exchange resins were simulated using similar quadratic reaction rate models. Vanadium was desorbed in the aqueous solutions of HCl or NaOH, the desorption characteristics of vanadium and tungsten depended on the desorption solution, and tungsten was desorbed in the aqueous solution of NaOH. It was possible to separate the two ions using the desorption process. The desorption reaction reached equilibrium within 30 min, and more than 90% recovery was possible.

The Quality Properties of Mortar for Using Tailings from the Sangdong Tungsten One as Admixture for Concrete (상동광산 광미를 콘크리트용 혼화재료로 사용하기 위한 모르타르의 품질특성)

  • Choi Yun-Wang;Jung Moon-Young;Jung Myung-Chae;Koo Gi-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.383-390
    • /
    • 2004
  • This study has focused on the possibility for recycling tailings from the Sangdong tungsten mine as admixture for concrete. The XRD(X-ray diffraction analysis) and PSA(Particle size analysis) were performed to find mineralogical characteristics. As a result of XRD analysis, the tailings from the Sangdong tungsten fine were composed of quartz, chlorite, anorthite and cordierite etc. As a result of KSLT for cement mortar mixed with tailings from the Sangdong tungsten mine, most of heavy metals were determined as below the guide line for waste material. In addition, the setting time and compressive strength of cement mortar mixed with tailings from the Sangdong tungsten mine were investigated. It was indicated that the initial and final set were retarded according to increasing replacement of tailings from the Sangdong tungsten mine. The compressive strength of mortar was decreased with increasing replacement of failings from the Sangdong tungsten mine.

Wear Mechanism and Machinability of PCD Tool in Turning Tungsten Carbides (초경합금재의 선반절삭에 있어서 PCD공구의 마멸 기구와 절삭성)

  • Heo, Sung Jung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 2013
  • The machinability of wear-resistible tungsten carbides and the tool wear behavior in machining of V30 and V50 tungsten carbides using PCD (Poly Crystalline Diamond) cutting tool was investigated to understand machining characteristics. This material is one of the difficult-to-cut materials in present, but their usage has been already broadened to every commercial applications such as mining tools, and impact resistant tools etc. Summary of the results are as follows. (1) Tool wear progression of PCD tools in turning of wear-resistible tungsten carbides were observed specially fast in primary cutting distance within 10m. (2) Three components of cutting resistance in this research were different in balance from the ordinary cutting such as that cutting of steel or cast iron. Those were expressed large value by order of thrust force, principal force, feed force. (3) If presume from viewpoint of high efficient cutting within this research, a proper cutting speed was 15m/min and a proper feed rate was 0.1mm/rev. In this case, it was found that the tool life of PCD tool was cutting distance until 230m approximately. (4) In cutting of wear-resistible tungsten carbides such as V30 and V50, it was recognized that the tool wear rate of V30 was very fast as compared with V50. (5) When the depth of cut was 0.1mm, there was no influence of the feed rate on the feed force. And the feed force tended to decrease as the cutting distance was long, because the tool was worn and the tool edge retreated. (6) It was observed that the tungsten carbides were adhered to the flank.

Correlation between Oxidation State and Electron Blocking Performance of Tungsten Oxide Interlayer in Organic Solar Cell

  • Lee, Ji-Seon;Jang, In-Hyuk;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.217-217
    • /
    • 2012
  • Solution-processed tungsten oxide thin film with thickness of about 30 nm is prepared from ammonium tungstate. This layer is introduced into the interface between the poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) layer and the ITO electrode to be used as an electron blocking layer. The annealed tungsten oxide thin films at $150^{\circ}C$ and $300^{\circ}C$ show amorphous phase, while the $400^{\circ}C$ -annealed tungsten oxide film shows crystalline phase. At $150^{\circ}C$ annealing temperature, the conversion efficiency is significantly improved from 0.71% to 1.42% as the condition is changed from vacuum to air atmosphere, which is related to oxidation state of tungsten in amorphous phase. For the air annealing condition, the conversion efficiency is further increased from 1.42% to 2.01% as the temperature is increased from $150^{\circ}C$ to $300^{\circ}C$, which is mainly due to the removal of the chemisorbed water. However, a slight deterioration in photovoltaic performance is observed when the temperature is increased to $400^{\circ}C$, which is ascribed to poor electron blocking ability due to the formation of crystalline phase. It is concluded that $W^{6+}$ oxidation state and amorphous nature in tungsten oxide interlayer is essential for blocking electron effectively from the active layer to the ITO electrode.

  • PDF

Microstructure and Mechanical Properties of Amorphous Matrix Composite Reinforced with Tungsten Porous Foam (텅스텐 다공성폼 강화 Zr계 비정질 기지 복합재료의 미세조직과 기계적 성질)

  • Son, Chang-Young;Lee, Sang-Bok;Lee, Sang-Kwan;Kim, Choongnyun Paul;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2010
  • In the present study, a Zr-based amorphous alloy matrix composite reinforced with tungsten porous foam was fabricated without pores or defects by liquid pressing process, and its microstructures and mechanical properties were investigated. About 69 vol.% of tungsten foam was homogeneously distributed inside the amorphous matrix, although the matrix of the composite contained a small amount of crystalline phases. The compressive test results indicate that the composite was not fractured at one time after reaching the maximum compressive strength, but showed considerable plastic strain as the compressive load was sustained by tungsten foam. The tungsten foam greatly improved the strength (2764 MPa) and ductility (39.4%) of the composite by homogeneously dispersing the stress applied to the matrix. This was because the tungsten foam and matrix were simultaneously deformed without showing anisotropic deformation due to the excellent bonding of tungsten/matrix interfaces. These findings suggest that the liquid pressing process is useful for the development of amorphous matrix composites with improved strength and ductility.

Performance Evaluation on the Endmill of High Speed Machining for Selection of Tungsten Carbide (WC-Co) Material (초경소재 선정을 위한 고속가공의 엔드밀 성능 평가)

  • Kwon, Dong-Hee;Kim, Jeong-Suk;Kim, Min-Wook;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.359-364
    • /
    • 2008
  • To satisfy the demand of higher cutting performance, mechanical properties with tungsten carbide (WC-Co) tool materials were investigated. Hardness and transverse rupture strength with WC grain size, Co content and density were measured. Compared to H, K, and S manufacture maker as tungsten carbide (WC-Co) tool materials were used for high-speed machining of end-milling operation. The three tungsten carbide (WC-Co) tool materials were evaluated by cutting of STD 11 cold-worked die steel (HRC25) under high-speed cutting condition. Also, tool life was obtained from measuring flank wear by CCD wear measuring system. Tool dynamometer was used to measure cutting force. The cutting force and tool wear are discussed along with tool material characteristics. Consequently, the end-mill of K, H manufacture maker showed higher wear-resistance due to its higher hardness, while the S maker endmill tool showed better performance for high metal removal.