DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Amorphous Matrix Composite Reinforced with Tungsten Porous Foam

텅스텐 다공성폼 강화 Zr계 비정질 기지 복합재료의 미세조직과 기계적 성질

  • Son, Chang-Young (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Lee, Sang-Bok (Composite Materials Laboratory, Korea Institute of Materials Science) ;
  • Lee, Sang-Kwan (Composite Materials Laboratory, Korea Institute of Materials Science) ;
  • Kim, Choongnyun Paul (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
  • 손창영 (포항공과대학교 항공재료연구센터) ;
  • 이상복 (한국기계연구원 부설 재료연구소 복합재료팀) ;
  • 이상관 (한국기계연구원 부설 재료연구소 복합재료팀) ;
  • 김충년 (포항공과대학교 항공재료연구센터) ;
  • 이성학 (포항공과대학교 항공재료연구센터)
  • Received : 2009.05.22
  • Published : 2010.02.20

Abstract

In the present study, a Zr-based amorphous alloy matrix composite reinforced with tungsten porous foam was fabricated without pores or defects by liquid pressing process, and its microstructures and mechanical properties were investigated. About 69 vol.% of tungsten foam was homogeneously distributed inside the amorphous matrix, although the matrix of the composite contained a small amount of crystalline phases. The compressive test results indicate that the composite was not fractured at one time after reaching the maximum compressive strength, but showed considerable plastic strain as the compressive load was sustained by tungsten foam. The tungsten foam greatly improved the strength (2764 MPa) and ductility (39.4%) of the composite by homogeneously dispersing the stress applied to the matrix. This was because the tungsten foam and matrix were simultaneously deformed without showing anisotropic deformation due to the excellent bonding of tungsten/matrix interfaces. These findings suggest that the liquid pressing process is useful for the development of amorphous matrix composites with improved strength and ductility.

Keywords

Acknowledgement

Supported by : 국방과학연구소, 한국과학재단, 지식경제부

References

  1. A. Peker and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993) https://doi.org/10.1063/1.110520
  2. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. Jim. 31, 425 (1990)
  3. J. K. Lee, S. H. Kim, W. T. Kim, and D. H. Kim, Met. Mater. Int. 7, 187 (2001) https://doi.org/10.1007/BF03026974
  4. A. Inoue, Acta Mater. 48, 279 (2000) https://doi.org/10.1016/S1359-6454(99)00300-6
  5. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 46, 403 (2008)
  6. H.-J. Jun, K. S. Lee, C. P. Kim, and Y. W. Chang, Met. Mater. Int. 14, 297 (2008) https://doi.org/10.3365/met.mat.2008.06.297
  7. J. G. Lee, S. S. Park, D.-G. Lee, S. Lee, and N. J. Kim, Intermetallics 12, 1125 (2004) https://doi.org/10.1016/j.intermet.2004.04.022
  8. L. Q. Xing, C. Bertrand, J. P. Dallas, and M. Cornet, Mater. Sci. Eng. A241, 216 (1998)
  9. C. Fan, C. Li, A. Inoue, and V. Haas, Phys. Rev. B 61, R3761 (2000) https://doi.org/10.1103/PhysRevB.61.R3761
  10. L.Q. Xing, Y. Li, K. T. Ramesh, J. Li, and T. C. Hufnagel, Phy. Rev. B 64, 180201(R) (2001)
  11. H. Choi-Yim and W. L. Johnson, Appl. Phys. Lett. 17, 3808 (1997)
  12. R. B. Dandliker, R. D. Conner, and W. L. Johnson, J. Mater. Res. 13, 2896 (1998) https://doi.org/10.1557/JMR.1998.0396
  13. Y. H. Jang, S. S. Kim, Y. C. Jung, and S. K. Lee, J. Kor. Inst. Met. & Mater. 42, 425 (2004)
  14. W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R44, 45 (2004)
  15. K. Lee, K. Euh, D. H. Nam, S. Lee, and N. J. Kim, Mater. Sci. Eng. A449, 937 (2007)
  16. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 45, 654 (2007)
  17. L. Mishnaevsky Jr. and P. Brondsted, Sci. and Tech. 69, 477 (2009) https://doi.org/10.1016/j.compscitech.2008.11.024
  18. K. Wang, T. Fujita, D. Pan, T. G. Nieh, A. Inoue, D. H. Kim, and M. W. Chen, Acta Mater. 56, 3077 (2008) https://doi.org/10.1016/j.actamat.2008.02.047
  19. B. A. Sjogren and L. A. Berglund, Comp. Sci. and Tech. 60, 9 (2000) https://doi.org/10.1016/S0266-3538(99)00096-2
  20. A. C. Lund and C. A. Schuh, Intermetallics 12, 1159 (2004) https://doi.org/10.1016/j.intermet.2004.07.001
  21. Z. F. Zhang, G. He, J. Eckert, and L. Schultz, Phys. Rev. Lett. 91, 045505 (2003) https://doi.org/10.1103/PhysRevLett.91.045505
  22. C. Gilbert, R. O. Richie, and W. L. Johnson, Appl. Phys. Lett. 71, 476 (1997) https://doi.org/10.1063/1.119610
  23. K. Kawamura, H. Kato, A. Inoue, and T. Masumoto, Appl. Phys. Lett. 67, 2008 (1995) https://doi.org/10.1063/1.114769