DOI QR코드

DOI QR Code

Separation of Vanadium and Tungsten from Simulated Leach Solutions using Anion Exchange Resins

음이온교환 수지를 이용한 바나듐/텅스텐 혼합용액으로부터 바나듐/텅스텐 분리회수에 관한 연구

  • Jong Hyuk, Jeon (Korea institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Hong In, Kim (Korea institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jin Young, Lee (Korea institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Rajesh Kumar, Jyothi (Korea institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2022.09.13
  • Accepted : 2022.10.13
  • Published : 2022.12.31

Abstract

The adsorption/desorption behavior and separation conditions of vanadium and tungsten ions were investigated using a gel-type anion-exchange resin. In the adsorption experiment with the initial acidity of the solution, the adsorption rate of vanadium was remarkably low in strong acids and bases. Additionally, the adsorption rate of tungsten was low in a strong base. An increase in the reaction temperature increased the adsorption reaction rate and maximum adsorption. The effect of tungsten on the maximum adsorption was minimal. The adsorption isotherms of vanadium and tungsten on the ion-exchange resin were suitable for the Langmuir adsorption isotherms of both the ions. For tungsten, the adsorption isotherms of vanadium and tungsten were polyoxometalate. Both ion-exchange resins were simulated using similar quadratic reaction rate models. Vanadium was desorbed in the aqueous solutions of HCl or NaOH, the desorption characteristics of vanadium and tungsten depended on the desorption solution, and tungsten was desorbed in the aqueous solution of NaOH. It was possible to separate the two ions using the desorption process. The desorption reaction reached equilibrium within 30 min, and more than 90% recovery was possible.

본 연구는 겔 타입의 음이온교환 수지를 이용하여 바나듐과 텅스텐 이온의 흡·탈착 거동과 분리조건을 규명하였다. 용액의 초기산도에 따른 흡착실험에서 바나듐은 강산성 및 강염기성에서 흡착률이 현저히 낮아지며, 텅스텐은 강염기성에서 흡착률이 낮게 나타났다. 반응온도의 상승은 흡착반응속도 및 최대흡착량의 증가에 영향을 주었으며, 텅스텐은 최대흡착량에 미치는 영향이 미미하였다. 이온교환 수지에 대한 바나듐과 텅스텐의 흡착등온실험은 두 이온 모두 Langmuir 흡착등온식에 적합하였으며, 텅스텐의 경우 폴리옥소메탈레이트화 되어 이온 간의 결합이 이루어져 다분자층 흡착의 형태가 나타나 Freundlich 흡착등온식에도 적합한 것으로 나타났다. 두 이온교환 수지 모두 유사 2차 반응속도모델에서 잘 모사되었으며, 탈착용액의 종류에 따른 바나듐과 텅스텐의 탈착특성에서 바나듐은 HCl 수용액 및 NaOH 수용액 모두 탈착이 이루어 졌으며, 텅스텐은 HCl 수용액에서 탈착이 전혀 이루어지지 않아 탈착공정을 통한 두 이온의 분리가 가능하였다. 탈착반응은 반응 개시 후 30분 이내에 평형에 도달하였으며, 90% 이상 회수가 가능하였다.

Keywords

References

  1. L. Luo, T. Miyazaki, A. Shibayama, et al., 2003 : A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap, Minerals Engineering, 16(7), pp.665-670. https://doi.org/10.1016/S0892-6875(03)00103-1
  2. L. J. Lozano, C. Godinez, 2003 : Comparative study of solvent extraction of vanadium from sulphate solution by primene R81 and alamine 336, Minerals Engineering, 16(3), pp.291-294. https://doi.org/10.1016/S0892-6875(03)00009-8
  3. Jong-Gwan Ahn, Jae-Woo Ahn, 2008 : The Optimum Condition Analysis of Vanadium Solvent Extraction by Alamine336 from the Synthetic Vanadium Sulfate Solution, Korean Journal of Metals and Materials, 46(12), pp.823-829.
  4. N. Gerhardt, A. Palant, V. Petrova, et al., 2001 : Solvent extraction of molybdenum(VI), tungsten(VI) and rhenium (VII) by diiosododecylamine from leach liquors, Hydrometallurgy, 60(1), pp.1-5. https://doi.org/10.1016/S0304-386X(00)00123-7
  5. J. Hu, X. Wang, L. Xiao, et al., 2009 : Removal of vanadium from molybdate solution by ion exchange, Hydrometallurgy, 95, pp.203-206. https://doi.org/10.1016/j.hydromet.2008.05.051
  6. J. Ahn, B. Kim, Y. Seo, 2003 : Adsorption Characteristics of Mo and W Using Chelating Resins, Journal of Korean Industrial and Engineering Chemistry, 11(2), pp.232-238.
  7. B. Smith, V. Patrick, 2002 : Quantitative Determination of Sodium Dodecatungstosilicate Speciation by 183W Nuclear Magnetic Resonance Spectroscopy, Australian J. of Chemistry, 55(4), pp.281-286. https://doi.org/10.1071/CH01092
  8. K. Hall, L. Eagleton, A. Acrivos, 1966 : Pore and Solid Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions, Industrial & Engineering Chemistry Fundermentals, 5(2), pp.212-223.
  9. J. Lee, J. Cho, H. Kim, 2011 : Study on adsorption kinetic characteristics of propineb pesticide on activated carbon, Clean Technology, 17(4), pp.346-352. https://doi.org/10.7464/KSCT.2011.17.4.346
  10. J. Lee, 2011 : Study on Adsorption Characteristics of Erythrosine Dye from Aqeous Solution Using Activated Carbon, Applied Chemistry for Engineering, 22(2), pp.224-229. https://doi.org/10.14478/ACE.2011.22.2.224
  11. P. Sampranpiboon, P. Charnkeitkong, 1979 : Equilibrium Isotherm, Thermodynamics and Kinetic Studies of lead adsorption onto pineapple and paper waste sludges, International J. of Energy and Environment, 4(3), pp.88-98.
  12. J. Lee, 2011 : Study on Adsorption Characteristics of Erythrosine Dye from Aqeous Solution Using Activated Carbon, Applied Chemistry for Engineering, 22(2), pp.224-229. https://doi.org/10.14478/ACE.2011.22.2.224
  13. B. H. Fukukawa, 2003 : Activated carbon water treatment technology and management, Donghwa Technol., pp. 69.
  14. Y. Ho, G. McKay, 1999 : Pseudo-second model for sorption processes, Process Biochemistry, 34(5), pp.451-465. https://doi.org/10.1016/S0032-9592(98)00112-5