• 제목/요약/키워드: Tumor suppressor protein p53

검색결과 100건 처리시간 0.024초

Ginkgo biloba Leaf Extract Regulates Cell Proliferation and Gastric Cancer Cell Death

  • Kim, Da Hyun;Yang, Eun Ju;Lee, JinAh;Chang, Jeong Hyun
    • 대한의생명과학회지
    • /
    • 제28권2호
    • /
    • pp.92-100
    • /
    • 2022
  • Ginkgo biloba Leaf Extract (GBE) is an extract from leaves of the Ginkgo biloba tree, widely used as a health supplement. GBE can inhibit the proliferation of several types of tumor cell. Although it is known to have anti-cancer effects in breast cancer and skin cancer, research related to gastric cancer is still insufficient. Based on results showing anti-cancer effects on solid cancer, we aimed to determine whether GBE has similar effects on gastric cancer. In this study, the anti-cancer effect of GBE in gastric adenocarcinoma was investigated by confirming the cell proliferation inhibitory effect of AGS cells. We also evaluated whether GBE regulates expression of the tumor suppressor protein p53 and Rb. GBE has apoptotic effects on AGS cells that were confirmed by changes in anti-apoptosis protein Bcl-2, Bcl-xl and pro-apoptosis protein Bax levels. Wound healing and cell migration were also decreased by treatment with GBE. Furthermore, we verified the effects of GBE on mitogenic signaling by investigating AKT target gene expression levels and revealed downregulated Sod2 and Bcl6 expression. We also confirmed that expression of inflammation-related genes decreased in a time-dependent manner. These results indicate that GBE has an anti-cancer effect on human gastric cancer cell lines. Further research on the mechanism of the anti-cancer effect will serve as basic data for possible anti-cancer drug development.

Down Regulation of miR-34a and miR-143 May Indirectly Inhibit p53 in Oral Squamous Cell Carcinoma: a Pilot Study

  • Manikandan, Mayakannan;Rao, Arunagiri Kuha Deva Magendhra;Arunkumar, Ganesan;Rajkumar, Kottayasamy Seenivasagam;Rajaraman, Ramamurthy;Munirajan, Arasambattu Kannan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7619-7625
    • /
    • 2015
  • Background: Aberrant microRNA expression has been associated with the pathogenesis of a variety of human malignancies including oral squamous cell carcinoma (SCC). In this study, we examined primary oral SCCs for the expression of 6 candidate miRNAs, of which five (miR-34a, miR-143, miR-373, miR-380-5p, and miR-504) regulate the tumor suppressor TP53 and one (miR-99a) is involved in AKT/mTOR signaling. Materials and Methods: Tumor tissues (punch biopsies) were collected from 52 oral cancer patients and as a control, 8 independent adjacent normal tissue samples were also obtained. After RNA isolation, we assessed the mature miRNA levels of the 6 selected candidates against RNU44 and RNU48 as endogenous controls, using specific TaqMan miRNA assays. Results: miR-34a, miR-99a, miR-143 and miR-380-5p were significantly down-regulated in tumors compared to controls. Moreover, high levels of miR-34a were associated with alcohol consumption while those of miR-99a and miR-143 were associated with advanced tumor size. No significant difference was observed in the levels of miR-504 between the tumors and controls whereas miR-373 was below the detection level in all but two tumor samples. Conclusions: Low levels of miR-380-5p and miR-504 that directly target the 3'UTR of TP53 suggest that p53 may not be repressed by these two miRNAs in OSCC. On the other hand, low levels of miR-34a or miR-143 may relieve MDM4 and SIRT1 or MDM2 respectively, which will sequester p53 indicating an indirect mode of p53 suppression in oral tumors.

Cyclin-dependent Kinase저해 단백질 p16^{INK4A}의 인체 암세포에서의 세포사멸 유도 활성 (A Cyclin-Dependent Kinase Inhibitor, p16^{INK4A}, Induces Apoptosis in The Human Cancer Cells.)

  • 김민경;이철훈
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.72-77
    • /
    • 2004
  • 본 연구진은 토양미생물의 배양액으로부터 cyclin-dependent kinase 저해활성의 Toyocamycin을 분리하였으며 〔16〕, 화학적 전합성을 통하여 활성이 개선된 유도체인 신물질 MCS-5A를 합성하였다〔3〕. 이 MCS-5A를 이용한 항암 기전규명을 위한 연구를 통하여 , human promyelocytic leukemia cell(HL-60)에서 MCS-5A에 의해 cyclin-dependent kinase inhibitor p16$^{INK4A}$ 단백질의 발현증가가 암세포의 세포주기 억제와 동시에 HL-60 cell희 세포사멸을 유도하는 것을 확인하였다(data not shown). 그러나 HL-60 cell의 경우와는 달리 non small cell lung cancer cell(NSCLC)인 A549 cell(p16$^{INK4A}$ 결핍 세포주)에 MCS-5A를 처리할 경우에는 전혀 세포사멸이 유도되지 않았다. 따라서 MCS-5A에 의한 HL-60 cell에서의 세포사멸 유도는 발암억제 유전자인 P16$^{INK4A}$의 세포 내 발현 및 존재 여부에 의해 좌우되는 것으로 판단되었다. 이러한 배경에서 본 연구는 p16$^{INK4A}$.의 기존에 알려진 세포주기 억제를 유발하는 cyclin-dependent kinase inhibitor(CKI)로서의 역할 뿐 아니라, p16$^{INK4A}$ 유전자가 세포사멸을 유도할 수 있다는 새로운 기능을 규명하기 위하여 다음의 연구를 시도하였다. 즉 $p^{INK4A}$ 결핍 세포주인 A549(-p16/+p53)와 H1299(-pl6/-p53) 그리고 p16$^{INK4A}$ 함유 세포주인 HeLa(+p16/+p53)세포에 외부로부터 p16$^{INK4A}$ 유전자를 도입시켜, 각 세포주에서의 세포사멸 유도 여부를 비교하고자 하였다. 우선 wild-type p16$^{INK4A}$ 유전자를 가진 HeLa cell에서 총 RNA를 추출하여, 역전사 반응으로 cDNA를 만들고, PCR을 통해 p16$^{INK4A}$ 유전자를 증폭하였다. pcDNA3.1/His is A vector에 p16$^{INK4A}$ 유전자를 끼워 넣고 competent cell (XL1-Blue)에 형질 전환하여 cloning한 후, p16$^{INK4A}$ clone을 다량으로 추출하였다. 위에 언급한 각각의 cell line에 p16$^{INK4A}$유전자를 농도(0, 1, 5, 10$\mu\textrm{g}$)별로 transfection 시킨 후, p16 단백질을 일정 시간 동안(12시간) 발현시킨 뒤, TUNEL등의 분석을 통해 세포사멸이 유도되는지를 확인하였으며, 또한 Western blot 분석을 통하여 p16단백질과 세포사멸 유도 인자인 caspase 3의 발+현 양상을 확인하였다. 연구 결과, Western blot을 통해 transfection시킨 p16/INK4A/유전자의 농도에 따라 각각의 cell line에서 Pro-caspase 3의 감소함을 관찰할 수 있었고, TUNEL분석을 통해 A549및 HeLa cell에서 세포사멸이 유도됨을 확인할 수 있었다 특히 A549(-p16/+p53)와 HeLa cell(+p16/+p53)에서는 TUNEL 분석 및 Western blot을 통한 pro-caspase 3의 caspase 3로의 전환 등을 통해 세포사멸이 발생하였음을 확연하게 확인할 수 있었으나, 반면 H1299(-pl6/-p53) cell에서는 단지 Western blot을 통한 pro-caspase 3의 활성화만을 통해 간접적으로 세포사멸을 확인 할 수 있었다. 또한 p53이 결핍된 H1299(-pl6/-p53)세포주에서의 $^{INK4A}$ 에 의한 세포사멸 유도는 p53 비의존적으로 작용한다는 사실을 확인할 수 있었다. 결론적으로 발암억제 유전자인 $^{INK4A}$ 는 CKI로서의 기능뿐 아니라, 세포사별 유도와도 밀접하게 관련되어 있으며, 이 기능은 발암 억제 유전자인 p53과는 독립적으로 작용한다는 사실을 확인하였다. 세포사멸 유도 기전연구에서 $p16^{INK4A}$ 가 세포사멸을 유도하는 기전에 대해서는 아직 명확하게 밝혀진 바는 없으며, 현재 본 연구실에서 다양한 실험을 통해 연구가 진행 중이다.

당귀로부터 정제한 Decursin의 인간 급성 단핵구성 백혈병 세포(THP-1 cells)의 세포 독성 및 Apoptosis에 미치는 영향 (Decursin from Angelica gigas Nakai Promotes Cytotoxicity and Induces Apoptosis in THP-1 cells, a Human Acute Monocytic Leukemia)

  • 김남석;정승일;김종석;오미진;오찬호
    • 생약학회지
    • /
    • 제47권3호
    • /
    • pp.197-203
    • /
    • 2016
  • Decursin is a major component of the root of Angelica gigas(Umbelliferae), which has been traditionally used in Korea as a tonic and to treat anemia, hemiplegia, and women's diseases. The objective of this study is to identify the anti-cancer mechanism induced by decursin on apoptosis of human leukemia and lymphoma cells. Cytotoxicity of decursin on U937, HL-60, MOLT-4, THP-1 cells showed the significant effects. First of all, $IC_{50}$ of decursin on four cell lines was 27.1, 32.4, 17.4, $15.1{\mu}M$, respectively. So $IC_{50}$ in THP-1 cells was the smallest among 4 cell lines treated with decursin($15.1{\mu}M$). In order to understand the apoptosis-mechanism by decursin, we examined the gene expression of bcl-2(anti-apoptotic), bax(pro-apoptotic) and p53(tumor suppressor)after treating the THP-1 cells with decursin(10, 50 and $100{\mu}M$). It was found bcl-2 gene was decreased dose dependently, the expression level of bax gene of THP-1 cells treated with $100{\mu}M$ of decursin was about 3 times higher than those of control, and p53 gene was increased In the same concentration($100{\mu}M$), p53 gene was increased dose dependent manner. In protein express, bcl-2 and p53 protein showed a tendency to decrease. bax was increased about 4 fold. Therefore decursin is a useful chemotherapeutic agent against leukemia.

Structural Characterization of Mouse HAUSP, a Proteolysis Regulator of p53

  • Lee, Hye-Jin;Yoo, Kyong-Jai;Baek, Kwang-Hyun
    • Animal cells and systems
    • /
    • 제8권3호
    • /
    • pp.205-212
    • /
    • 2004
  • The tumor suppressor protein p53 is stabilized by the herpes-virus-associated ubiquitin-specific protease (HAUSP), a deubiquitinating enzyme. We previously isolated and characterized a mouse orthologue of HAUSP, mHAUSP. mHAUSP cDNA consisted of 3,312 bp encodes 1,103 amino acids with a molecular weight of approximately 135 kDa containing highly conserved Cys, Asp (I), His, and Asn/Asp (II) domains. In this study, we carried out site-directed mutagenesis of 6 conserved amino acids (Cys224, Gln231, Asp296, His457, His465, and Asp482) in Cys box, QQD box, and His box. Interestingly, the conserved Gln 231 was not essential for the catalytic activity of mHAUSP. However, the other conserved amino acids were required for deubiquitinating activity of mHAUSP. We performed isopeptidase assay and confirmed that mHAUSP is able to remove ubiquitin from ubiquitinated substrates. In addition, we observed that mHAUSP induces apoptosis in HeLa cells.

Protective effect of p53 in vascular smooth muscle cells against nitric oxide-induced apoptosis is mediated by up-regulation of heme oxygenase-2

  • Kim, Young-Myeong;Choi, Byung-Min;Kim, Yong-Seok;Kwon, Young-Guen;Kibbe, Melina R.;Billiar, Timothy R.;Tzeng, Edith
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.164-169
    • /
    • 2008
  • The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygen-ase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.

MCF-7 인체 유방암 세포에서 옻나무 추출물이 p53-Dependent G1 Cell Cycle에 미치는 영향 (Induction of p53-Dependent G1 Cell Cycle Arrest by Rhus verniciflua. Stokes Extract in Human Breast Carcinoma MCF-7 Cells)

  • 홍상훈;한민호;최영현;박상은
    • 대한한방내과학회지
    • /
    • 제36권1호
    • /
    • pp.13-21
    • /
    • 2015
  • Objectives : In Korea, Rhus verniciflua Stokes (RVS) has been used in traditional medicine for various diseases such as back pain, syndromes of the blood system in women, gastrointestinal disease, and cancer. However, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated yet. Methods : This study investigated the possible mechanisms by which RVS extract (RVE) exerts its anti-proliferative action in cultured human breast carcinoma MCF-7 cells. Results : Treatment with RVE in MCF-7 cells resulted in inhibition of cell viability through G1 arrest of the cell cycle and induction of apoptosis in a time- and concentration-dependent manner, as determined by MTT assay and flow cytometry analysis. The induction of G1 arrest by RVE treatment was associated with the inhibition of cyclin D1, cyclin-dependent kinase (Cdk) 2, retinoblastoma protein (pRB), and mouse double minute 2 (MDM2) expression. Moreover, RVE treatment concentration dependently increased the levels of tumor suppressor p53, which was associated with the marked induction of Cdk inhibitors such as p21 (Waf1/Cip1) and p27 (Kip1). However, the inhibition of p53 function by the wild-type p53-specific inhibitor, pifithrin-α, abolished the above-mentioned effects of RVE, showing that p53 was responsible for the cytotoxicity of RVE Conclusions : These data indicate that a molecular pathway involving p53-dependent G1 cell cycle arrest plays a pivotal role in the cellular response to RVE, and demonstrate the potential applications of RVE as an anti-cancer drug for breast cancer treatment.

윤폐산에 의한 폐암세포 증식억제기전에 관한 연구 (The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells)

  • 강윤경;박동일;이준혁;최영현
    • 동의생리병리학회지
    • /
    • 제16권4호
    • /
    • pp.745-755
    • /
    • 2002
  • To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee;Jang, Yin-Gi;Kim, Cho-Won;Go, Ryeo-Eun;Lee, Hong Kyu;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.151-161
    • /
    • 2022
  • This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

BRD7 Promoter Hypermethylation as an Indicator of Well Differentiated Oral Squamous Cell Carcinomas

  • Balasubramanian, Anandh;Subramaniam, Ramkumar;Narayanan, Vivek;Annamalai, Thangavelu;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1615-1619
    • /
    • 2015
  • Background: Promoter hypermethylation mediated gene silencing of tumor suppressor genes is considered as most frequent mechanism than genetic aberrations such as mutations in the development of cancers. BRD7 is a single bromodomain containing protein that functions as a subunit of SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well know tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. Loss of expression of BRD7 has been observed in breast cancers and nasopharyngeal carcinomas due to promoter hypermethylation. However, the genetic status of BRD7 in oral squamous cell carcinomas (OSCCs) is not known, although OSCC is one of the most common among all reported cancers in the Indian population. Hence, in the present study we investigated OSCC samples to determine the occurrence of hypermethylation in the promoter region of BRD7 and understand its prevalence. Materials and Methods: Genomic DNA extracted from biopsy tissues of twenty three oral squamous cell carcinomas were digested with methylation sensitive HpaII type2 restriction enzyme that recognizes and cuts unmethylated CCGG motifs. The digested DNA samples were amplified with primers flanking the CCGG motifs in promoter region of BRD7 gene. The PCR amplified products were analyzed by agarose gel electrophoresis along with undigested amplification control. Results: Methylation sensitive enzyme technique identified methylation of BRD7 promoter region seventeen out of twenty three (74%) well differentiated oral squamous cell carcinoma samples. Conclusions: The identification of BRD7 promoter hypermethylation in 74% of well differentiated oral squamous cell carcinomas indicates that the methylation dependent silencing of BRD7 gene is a frequent event in carcinogenesis. To the best of our knowledge, the present study is the first to report the occurrence of BRD7and its high prevalence in oral squamous cell carcinomas.