Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.074

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway  

Ko, Eul-Bee (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Jang, Yin-Gi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Kim, Cho-Won (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Go, Ryeo-Eun (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Lee, Hong Kyu (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Choi, Kyung-Chul (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
Publication Information
Biomolecules & Therapeutics / v.30, no.2, 2022 , pp. 151-161 More about this Journal
Abstract
This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.
Keywords
Lung cancer; Gallic acid; Cell cycle; Apoptosis; PI3K/Akt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Deshpande, A., Sicinski, P. and Hinds, P. W. (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909-2915.   DOI
2 Gao, N., Flynn, D. C., Zhang, Z., Zhong, X. S., Walker, V., Liu, K. J., Shi, X. and Jiang, B. H. (2004) G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 287, C281-C291.
3 Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A. and McCubrey, J. A. (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603.   DOI
4 Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C. and Gonzalez-Baron, M. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193-204.   DOI
5 Chia, Y. C., Rajbanshi, R., Calhoun, C. and Chiu, R. H. (2010) Antineoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules 15, 8377-8389.   DOI
6 Dasari, S. and Tchounwou, P. B. (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364-378.   DOI
7 Evan, G. I. and Vousden, K. H. (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342-348.   DOI
8 Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y. and Yabu, Y. (1994) Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun. 204, 898-904.   DOI
9 Ji, B. C., Hsu, W. H., Yang, J. S., Hsia, T. C., Lu, C. C., Chiang, J. H., Yang, J. L., Lin, C. H., Lin, J. J., Suen, L. J., Gibson Wood, W. and Chung, J. G. (2009) Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J. Agric. Food Chem. 57, 7596-7604.   DOI
10 Yu, J. S. and Cui, W. (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143, 3050-3060.   DOI
11 Siegel, R. L., Miller, K. D. and Jemal, A. (2019) Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34.   DOI
12 Liang, C. Z., Zhang, X., Li, H., Tao, Y. Q., Tao, L. J., Yang, Z. R., Zhou, X. P., Shi, Z. L. and Tao, H. M. (2012) Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. Cancer Biother. Radiopharm. 27, 701-710.   DOI
13 Locatelli, C., Filippin-Monteiro, F. B. and Creczynski-Pasa, T. B. (2013) Alkyl esters of gallic acid as anticancer agents: a review. Eur. J. Med. Chem. 60, 233-239.   DOI
14 Mou, H., Zheng, Y., Zhao, P., Bao, H., Fang, W. and Xu, N. (2011) Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria- and Fas/FasL-mediated pathways. Toxicol. In Vitro 25, 1027-1032.   DOI
15 Tian, X., Huang, B., Zhang, X. P., Lu, M., Liu, F., Onuchic, J. N. and Wang, W. (2017) Modeling the response of a tumor-suppressive network to mitogenic and oncogenic signals. Proc. Natl. Acad. Sci. U.S.A. 114, 5337-5342.   DOI
16 Wang, K., Zhu, X., Zhang, K., Zhu, L. and Zhou, F. (2014) Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J. Biochem. Mol. Toxicol. 28, 387-393.   DOI
17 Zhang, H. Y., Zhang, P. N. and Sun, H. (2009) Aberration of the PI3K/AKT/mTOR signaling in epithelial ovarian cancer and its implication in cisplatin-based chemotherapy. Eur. J. Obstet. Gynecol. Reprod. Biol. 146, 81-86.   DOI
18 Badhani, B., Sharma, N. and Kakkar, R. (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 5, 27540-27557.   DOI
19 Cheng, H., Shcherba, M., Pendurti, G., Liang, Y., Piperdi, B. and Perez-Soler, R. (2014) Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manag. 3, 67-75.   DOI
20 Xu, J., Ji, L. D. and Xu, L. H. (2006) Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol. Lett. 166, 160-167.   DOI
21 Bellamy, C. O. (1997) p53 and apoptosis. Br. Med. Bull. 53, 522-538.   DOI
22 Verma, S., Singh, A. and Mishra, A. (2013) Gallic acid: molecular rival of cancer. Environ. Toxicol. Pharmacol. 35, 473-485.   DOI
23 Rajalakshmi, K., Devaraj, H. and Niranjali Devaraj, S. (2001) Assessment of the no-observed-adverse-effect level (NOAEL) of gallic acid in mice. Food Chem. Toxicol. 39, 919-922.   DOI
24 Sinnberg, T., Lasithiotakis, K., Niessner, H., Schittek, B., Flaherty, K. T., Kulms, D., Maczey, E., Campos, M., Gogel, J., Garbe, C. and Meier, F. (2009) Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J. Invest. Dermatol. 129, 1500-1515.   DOI
25 Sourani, Z. M., Pourgheysari, B. P., Beshkar, P. M., Shirzad, H. P. and Shirzad, M. M. (2016) Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran. J. Med. Sci. 41, 525-530.
26 Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M., Court, W., Lomas, C., Mendiola, M., Hardisson, D. and Eccles, S. A. (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 29.   DOI
27 Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. and van Bree, C. (2006) Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315-2319.   DOI
28 Choubey, S., Varughese, L. R., Kumar, V. and Beniwal, V. (2015) Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm. Pat. Anal. 4, 305-315.   DOI
29 Collins, K., Jacks, T. and Pavletich, N. P. (1997) The cell cycle and cancer. Proc. Natl. Acad. Sci. U.S.A. 94, 2776-2778.   DOI
30 Decatris, M. P., Sundar, S. and O'Byrne, K. J. (2004) Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat. Rev. 30, 53-81.   DOI
31 Gridelli, C., Rossi, A., Carbone, D. P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L. and Rosell, R. (2015) Non-smallcell lung cancer. Nat. Rev. Dis. Primers 1, 15009.   DOI
32 Hemann, M. T. and Lowe, S. W. (2006) The p53-Bcl-2 connection. Cell Death Differ. 13, 1256-1259.   DOI
33 Ihle, N. T. and Powis, G. (2010) Inhibitors of phosphatidylinositol-3-kinase in cancer therapy. Mol. Aspects Med. 31, 135-144.   DOI
34 Isuzugawa, K., Inoue, M. and Ogihara, Y. (2001) Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol. Pharm. Bull. 24, 1022-1026.   DOI
35 Zappa, C. and Mousa, S. A. (2016) Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res. 5, 288-300.   DOI
36 Florea, A. M. and Busselberg, D. (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3, 1351-1371.   DOI
37 Wang, R., Ma, L., Weng, D., Yao, J., Liu, X. and Jin, F. (2016) Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep. 35, 3075-3083.   DOI
38 Wang, X., Martindale, J. L. and Holbrook, N. J. (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 275, 39435-39443.   DOI
39 You, B. R., Kim, S. Z., Kim, S. H. and Park, W. H. (2011) Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol. Cell. Biochem. 357, 295-303.   DOI
40 Yousef, M. I., Saad, A. A. and El-Shennawy, L. K. (2009) Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem. Toxicol. 47, 1176-1183.   DOI
41 Maurya, D. K., Nandakumar, N. and Devasagayam, T. P. (2011) Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr. 48, 85-90.   DOI
42 Jang, Y. G., Ko, E. B. and Choi, K. C. (2020) Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem. 84, 108444.   DOI
43 Jones, E. V., Dickman, M. J. and Whitmarsh, A. J. (2007) Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem. J. 405, 617-623.   DOI
44 Katiyar, S. K., Roy, A. M. and Baliga, M. S. (2005) Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol. Cancer Ther. 4, 207-216.   DOI
45 Lo, C., Lai, T. Y., Yang, J. H., Yang, J. S., Ma, Y. S., Weng, S. W., Chen, Y. Y., Lin, J. G. and Chung, J. G. (2010) Gallic acid induces apoptosis in A375.S2 human melanoma cells through caspase-dependent and -independent pathways. Int. J. Oncol. 37, 377-385.
46 Loehrer, P. J. and Einhorn, L. H. (1984) Drugs five years later. Cisplatin. Ann. Intern. Med. 100, 704-713.   DOI
47 Moghtaderi, H., Sepehri, H., Delphi, L. and Attari, F. (2018) Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. Bioimpacts 8, 185-194.   DOI
48 Zeng, M., Su, Y., Li, K., Jin, D., Li, Q., Li, Y. and Zhou, B. (2020) Gallic acid inhibits bladder cancer T24 cell progression through mitochondrial dysfunction and PI3K/Akt/NF-κB signaling suppression. Front. Pharmacol. 11, 1222.   DOI
49 Zhao, B. and Hu, M. (2013) Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol. Lett. 6, 1749-1755.   DOI
50 Zhou, Y. D., Hou, J. G., Yang, G., Jiang, S., Chen, C., Wang, Z., Liu, Y. Y., Ren, S. and Li, W. (2019) Icariin ameliorates cisplatin-induced cytotoxicity in human embryonic kidney 293 cells by suppressing ROS-mediated PI3K/Akt pathway. Biomed. Pharmacother. 109, 2309-2317.   DOI
51 Pignon, J. P., Tribodet, H., Scagliotti, G. V., Douillard, J. Y., Shepherd, F. A., Stephens, R. J., Dunant, A., Torri, V., Rosell, R., Seymour, L., Spiro, S. G., Rolland, E., Fossati, R., Aubert, D., Ding, K., Waller, D. and Le Chevalier, T.; LACE Collaborative Group (2008) Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552-3559.   DOI
52 Han, S. W. and Roman, J. (2010) Targeting apoptotic signaling pathways in human lung cancer. Curr. Cancer Drug Targets 10, 566-574.   DOI
53 Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M. and To, S. S. (2010) Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol. 641, 102-107.   DOI
54 Markman, M., Rothman, R., Hakes, T., Reichman, B., Hoskins, W., Rubin, S., Jones, W., Almadrones, L. and Lewis, J. L., Jr. (1991) Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. J. Clin. Oncol. 9, 389-393.   DOI
55 Aborehab, N. M. and Osama, N. (2019) Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 19, 154.   DOI
56 Antognelli, C., Frosini, R., Santolla, M. F., Peirce, M. J. and Talesa, V. N. (2019) Oleuropein-induced apoptosis is mediated by mitochondrial glyoxalase 2 in NSCLC A549 cells: a mechanistic inside and a possible novel nonenzymatic role for an ancient enzyme. Oxid. Med. Cell. Longev. 2019, 8576961.
57 Liu, S. L., Liu, Z., Zhang, L. D., Zhu, H. Q., Guo, J. H., Zhao, M., Wu, Y. L., Liu, F. and Gao, F. H. (2017) GSK3beta-dependent cyclin D1 and cyclin E1 degradation is indispensable for NVP-BEZ235 induced G0/G1 arrest in neuroblastoma cells. Cell Cycle 16, 2386-2395.   DOI