• Title/Summary/Keyword: Tumor metabolism

Search Result 229, Processing Time 0.033 seconds

Effects of Dietary Copper Source and Level on Performance, Carcass Characteristics and Lipid Metabolism in Lambs

  • Cheng, Jianbo;Fan, Caiyun;Zhang, Wei;Zhu, Xiaoping;Yan, Xiaogang;Wang, Runlian;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.685-691
    • /
    • 2008
  • An experiment was conducted to determine the effect of dietary copper (Cu) on performance, carcass characteristics and lipid metabolism in lambs. Fifty DorperMongolia wether lambs (approximately 3 month of age; 23.80.6 kg of body weight) were housed in individual pens and were assigned randomly to one of five treatments. Treatments consisted of 1) control (no supplemental Cu), 2) 10 mg Cu/kg DM from Cu-lysine, 3) 20 mg Cu/kg DM from Cu-lysine, 4) 10 mg Cu/kg DM from tribasic copper chloride (Cu2(OH)3Cl; TBCC), 5) 20 mg Cu/kg DM from tribasic copper chloride. The Cu concentration was 6.74 mg/kg DM in the basal diet. Body weight was measured on two consecutive days at the start and the end of the 60-day experimental period. Blood samples were collected and then the lambs were slaughtered on d 60. Performance was not affected (p>0.05) by dietary Cu treatment. Cu-supplemented and control lambs had similar hot carcass weight, dressing percentage and longissimus muscle area, but Cu supplementation, regardless of source and level, reduced (p<0.01) 12th rib backfat and kidney fat in lambs. Plasma tumor necrosis factor-alpha (TNF-) and serum triglyceride concentrations were increased (p<0.05), total cholesterol concentrations were decreased (p<0.05) and nonesterified fatty acids (NEFA) concentrations tended to be increased (p<0.07) by Cu supplementation. However, Serum concentrations of HDL-cholesterol and LDL-cholesterol were not affected (p>0.05) by dietary treatment. Fatty acid profile of longissimus muscle was similar across treatments. These results indicate that Cu-lysine and TBCC are of similar availability in lambs. Cu supplementation given to DorperMongolia wether lambs altered lipid metabolism. The reduction in backfat depth may be due to copper altering TNF- metabolism in lambs. Supplementation of 10 or 20 mg Cu/kg DM showed similar effects on lipid metabolism in lambs.

Effects of Agmatine on Polyamine Metabolism and the Growth of Prostate Tumor Cells

  • Choi, Yon-Sik;Cho, Young-Dong
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • The effects of agmatine on the enzymes responsible for the biosynthesis of polyamines, the resultant levels of polyamines, and their effect on the growth of DU145 human prostate tumor cells were investigated. When agmatine was added to the medium, ornithine decarboxylase (ODC, EC 4.1.1.17) activity was substantially reduced, but S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) activity increased markedly. These changes in ODC and SAMDC activities were the result of an induction of ODC-antizyme and a decreased turnover rate of SAMDC in the presence of agmatine. Accordingly, there was a decrease in the intracellular levels of putrescine and spermidine but an increase in the intracellular level of spermine. Cell growth was markedly inhibited by agmatine treatment and this inhibition was not recovered by the addition of putrescine or spermidine. Our results suggest that agmatine alters the intracellular amounts of polyamine in the cells, closely related to the inhibition of cell growth.

  • PDF

Clinical Application of $^{18}F-FDG$ PET in Brain Tumors (뇌종양에서의 $^{18}F-FDG$ PET의 임상 이용)

  • Hong, Il-Ki;Kim, Jae-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.1-5
    • /
    • 2008
  • Primary brain tumor accounts for 1.4% of entire cancer. For males between the ages of 15 and 34 years, central nervous system tumors account for the leading cause of cancer death. $^{18}F-FDG$ PET has been reported that it can provide important diagnostic information relating to tumor grading and differentiation from non- tumorous condition. In addition, the degree of FDG metabolism carries prognostic significance. By mapping the metabolic pattern of heterogeneous tumors, $^{18}F-FDG$ PET can aid in targeting for stereotactic biopsy by selecting the subregions within the tumor that are most hypermetabolic and potentially have the highest grade. According to clinical research data, FOG PET is expected to be a helpful diagnostic tool in the management of brain tumors.

Radiopharmaceuticals for Imaging of Cellular Proliferation (세포 증식 영상용 방사성의약품)

  • Oh, Seung-Jun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.4
    • /
    • pp.209-223
    • /
    • 2002
  • By considering the biological properties of a tumor, it should be possible to realize better results in cancer therapy. PET imaging offers the opportunity to measure tumor growth non-invasively and repeatedly as an early assessment of response to cancer therapy. Measuring cellular growth instead of energy metabolism showed offer significant advantages in evaluating therapy. Thymidine and its derivative nucleoside compounds can be changed to mono, di- and tri- phosphate compounds by thymidine kinase and then be incorporated into DNA. Their bindings are increased in highly proliferating cells due to the high DNA synthesis rate. To evaluate cell proliferation, many kinds of thymidine and uridine derivatives have been labeled with positron emitter and radioactive iodine. Compared to radiopharmaceuticals which have radioisotope labeled base ring such as pyirmidine, the radiopharmacuticals which have radioisotope labeled sugar ring are more stable in vivo and have metabolic resistance. The biological properties such as DNA incorporation ratios are highly dependent on their chemical structures and metabolic processes. This overview describes synthesis of radiopharmaceuticals and their biological properties for imaging of tumor cell proliferation.

lntracellular $Ca^{2+}$ Mediates Lipoxygenase-induced Proliferation of U-373 MG Human Astrocytoma Cells

  • Kim, Jung-Ae;Chung, Young-Ja;Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.664-670
    • /
    • 1998
  • The role of intracellular $Ca^{2+}$, in the regulation of tumor cell proliferation by products of arachidonic acid (AA) metabolism was investigated using U-373 MG human as trocytoma cells. Treatment with nordihydroguaiaretic acid (NDGA), a lipoxygenase (LOX) inhibitor, or caffeic acid (CA), a specific 5-LOX inhibitor, suppressed proliferation of the tumor cells in a dose-dependent manner. However, indomethacin (indo), a cyclooxygenase (COX) inhibitor, did not significantly alter proliferation of the tumor cells. At anti-proliferative concentrations, NDGA and CA significantly inhibited intracellular $Ca^{2+}$ release induced by carbachol, a known intracelluar $Ca^{2+}$ agonist in the tumor cells. Exogenous administration of leukotriene $B_4(LTB_4)$, an AA metabolite of LOX pathway, enhanced proliferation of the tumor cells in a concentration-dependent fashion. In addition, $LTB_4$, induced intracelluar $Ca^{2+}$ release. Intracellular $Ca^{2+}$-inhibitors, such as an intracellular $Ca^{2+}$ chelator (BAPTA) and intracellular $Ca^{2+}$-release inhibitors (dantrolene and TMB-8), significantly blocked the LTB4-induced enhancement of cell proliferation and intracellular $Ca^{2+}$ release. These results suggest that LOX activity may be critical for cell proliferation of the human astrocytoma cells and that intracelluar $Ca^{2+}$ may play a major role in the mechanism of action of LOX.

  • PDF

Modulation of L-Arginine-Arginase Metabolic Pathway Enzymes: Immunocytochemistry and mRNA Expression in Peripheral Blood and Tissue Levels in Head and Neck Squamous Cell Carcinomas in North East India

  • Srivastava, Shilpee;Ghosh, Sankar Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7031-7038
    • /
    • 2015
  • Background: Arginine may play important roles in tumor progression by providing ornithine for polyamine biosynthesis, required for cell growth. The aim of this work was to determine the expression of arginine metabolic pathway enzymes in head and neck squamous cell carcinoma (HNSCC) in northeast India. Materials and Methods: The expressions of arginase isoforms (ARG1 and ARG2), ornithine aminotransferase (OAT) and ornithine decarboxylase (ODC) were examined in fifty paired HNSCC and adjacent non-tumor tissues by immunohistochemistry. Immunocytochemistry, semiquantitative reverse transcription sq-PCR and quantitative real-time qPCR were used to assess protein and mRNA expressions in peripheral blood of fifty HNSCC patients and hundred controls. Results: ARG1 and ODC protein and mRNA were strongly expressed in peripheral blood from HNSCC patients. No ARG2 expression was observed. In vivo, expression of ARG1, ARG2 and ODC was significantly higher in tumor than in non-tumor tissues. Most tumors expressed low levels of OAT, with no difference in tissues or blood, compared to controls. The absolute extent of maximal ARG1 upregulation with qPCR showed 6.23 fold increase in HNSCC. Conclusions: These findings strongly suggest that in HNSCCs, the ARG1 pathway is stimulated leading to the formation of polyamines as indicated by higher ODC expression, which promote tumor growth.

Glucosylated Polyethylenimine as a Tumor-Targeting Gene Carrier

  • Park In-Kyu;Cook Seung-Eun;Kim You-Kyoung;Kim Hyun-Woo;Cho Myung-Haing;Jeong Hwan-Jeong;Kim Eun-Mi;Nah Jae-Woon;Bom Hee-Seung;Cho Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1302-1310
    • /
    • 2005
  • Glucosylated polyethylenimine (GPEI) was synthesized as a tumor-targeting gene carrier through facilitative glucose metabolism by tumor glucose transporter. Particle sizes of GPEI/DNA complex increased in proportion to glucose content of GPEI, whereas surface charge of the complex was not dependent on glucosylation, partially due to inefficient shielding of the short hydrophilic group introduced. GPEI with higher glucosylation (36 mol-$\%$) had no cytotoxic effect on cells even at polymer concentrations higher than 200 $\mu$g/mL. Compared to unglucosylated PEl. glucosylation induced less than one-order decrease of transfection efficiency. Transfection of GPEI/DNA complex into tumor cells possibly occurred through specific interaction between glucose-related cell receptors and glucose moiety of GPEI. Gamma imaging technique revealed GPEI/DNA complex was distributed in liver. spleen. and tumors.

Chemopreventive Potential of Angelicae gigantis Radix Aqua-acupuncture Solution (당귀 약침액의 암예방 효과)

  • 김영기;조경희;손윤희;최혜경;김소연;임종국;남경수
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.283-292
    • /
    • 2000
  • Angelicae gigantis Radix aqua-acupuncture solution (AGRAS) and Angelicae gigantis Radix water-extracted solution (AGRWS) were prepared and tested for their organ toxicities and chemopreventive potentials. The organ-toxicity of AGRAS to male ICR mice was studied by the measurements of glutamic oxaloacetic transaminase (GOT), glutamic pyruvate transaminase (GPT), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP-s) activities after injection of AGRAS for 7 days. The activities of GOT GPT and LDH were decreased, but the activity of ALP-s was not changed with AGRAS. When AGRAS was administered once daily for 10 days before the tumor implantation, AGRAS exerted antitumor activity by inhibiting the growth of Ehrich ascites tumor cells (EATC) in viva. The inductions of quinone reductase (QR), glutathione (GSH) and glutathione S-transferase (GST) and inhibition of polyamine metabolism were tested for the chemopreventive potentials of AGRAS and AGRWS. AGRAS was potent inducer of QR activity in murine hepatoma Hepalclc7 cells. In cultured rat Ac2F cells, AGRAS was also significantly induced QR activity GSH levels were increased about 1.3 fold with AGRAS. In addition the activity of GST was increased about 2.5 fold with AGRAS at the concentration of $0.1{\;}{\times}{\;}$. The effects of AGRAS and AGRWS were tested on the growth of Acanthamoeba castellanii. Proliferation of Acanthamoeba castellanii in a broth medium was inhibited by AGRAS and AGRWS at the concentration of $1{\;}{\times}{\;}and{\;}5{\;}{\times}{\;}$, respectively: These results suggest that AGRAS has chemopreventive potential by inducing QR activity increasing GSH and GST levels and inhibition of polyamine metabolism.

  • PDF

The Effects of Blood-acting and Stasis-eliminating therapy on Anti-tumor and hematogenic metastasis (활혈화어법(活血化瘀法)의 항종양(抗腫瘍) 및 혈행(血行) 전이(轉移)에 대(對)한 고찰(考察))

  • Park, Mee-Ryong;Lee, Yeon-Weol;Cho, Jung-Hyo;Son, Chang-Kyu;Yoo, Hwa-Seung;Cho, Chong-Kwan
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.9 no.1
    • /
    • pp.53-63
    • /
    • 2003
  • This study was analyzed the effects of blood-activating and stasis-eliminating herbs on anti-tumor and hematogenic metastasis. The metastasis and recurrence of tumor was the basis of yudok(yudu) on remained tumor cell and stagnation of blood, thermotoxo, phlegm, asthenia of healthy enerngy, stagnation of vital energy. Malignant tumor is caused by carcinogen and go through the progress of initiation, promotion, progression, it is closely related with Eohyul$(y{\grave{u}}xi {\breve{e}})$. Symptoms of blood stasis disease are purplish tongue, mass, fixed stabbing pain, ecchymosis of nail, hypodermic petechia, dermal thesaurismosis, melena, ecchymoma, disturbance of circulation. Effects on the therapy of activating blood circulation and congestion are anti-tumor, anti-coagulation, anti-hemolysis, anti-solution, anti-inflammation, anti-infection, control of blood circulations, control of connective tissue metabolism and control of immunity. They can directly kill the cancer cells entering the blood circulation, inhibit the formation of tumor embody and reduce the blood hyperviscosity. It is suggested that these herbs can be used to prevent and treat blood metastasis of cancer under the guidance of syndrome differentiation.

  • PDF

Small Animal Small Animal $[^{18}F]$FDG PET Imaging for Tumor Model Study (종양 모델 연구를 위한 소동물 $[^{18}F]$FDG PET 영상화)

  • Woo, Sang-Keun;Kim, Kyeong-Min;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with $[^{18}F]$FDG has been successfully applied to investigation of metabolism, receptor-ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of $[^{18}F]$FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal $[^{18}F]$FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model.