Browse > Article

Small Animal Small Animal $[^{18}F]$FDG PET Imaging for Tumor Model Study  

Woo, Sang-Keun (Molecular Imaging Research Center, Radiological and Medical Sciences Research Institute, Korea Institute of Radiological and Medical Sciences)
Kim, Kyeong-Min (Molecular Imaging Research Center, Radiological and Medical Sciences Research Institute, Korea Institute of Radiological and Medical Sciences)
Cheon, Gi-Jeong (Molecular Imaging Research Center, Radiological and Medical Sciences Research Institute, Korea Institute of Radiological and Medical Sciences)
Publication Information
Nuclear Medicine and Molecular Imaging / v.42, no.1, 2008 , pp. 1-7 More about this Journal
Abstract
PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with $[^{18}F]$FDG has been successfully applied to investigation of metabolism, receptor-ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of $[^{18}F]$FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal $[^{18}F]$FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model.
Keywords
small animal PET; [$^{18}F$]FDG; clinical CT; experimental condition; fiducial marker; registration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000;97:9226-33
2 Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PETscanner for animal imaging. J Nucl Med 1999;40:1164-75
3 Waber S, Bauer A. Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 2004;31:1545-55   DOI
4 Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M, Grossman HB, Fisher S. $^18$F-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. Cancer 1991;67:1544-50   DOI   ScienceOn
5 Chow PL, Rannou FR and Chatziioannou AF. Attenuation correction for a 3D small animal PET tomograph, using x-ray microCT. Molecular Imaging and Biology 2002;4:S17
6 Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind JF, Wahl RL. Initial experience in small animal tumor imaing with a clinical positron emission tomography/computed tomogrphy scanner using 2-F-18 fluoro-2-deoxy-D-glucose. Can Res 2003;63:6252-7
7 Langen KJ, Braun U, Rota Kops E. Herzog H, Kuwert T, Nebeling B, et al. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 1993;34:355-9
8 Toyama H, Ichise M, Liow JS, Mines DC, Seneca NM, Modell KJ et al. Evaluation of anesthesia effects on 18F FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31:251-6   DOI   ScienceOn
9 Hudson HM and Larkin RS. Accelerated Image Reconstruction Using Ordered Subsets of Projection Data. IEEE Trans Med Imag 1994;13:601-9   DOI   ScienceOn
10 Woo SK, KM Kim, Lee TS, Kim JY, Jung JH, Woo KS, et al. Experimental condition and registration method for the tumor detection of lung metastasis small animal PET and CT whole body images. IEEE Nuclear Science Symposium and Medical Imaging Conference 2007;5:3372-5
11 Wong CY, Thie J, Parling-Lynch KJ, Zakalik D, Margolis JH, Gaskill M, et al. Glucose-normalized standardized uptake value from (18)F-FDG PET in classifying lymphomas. J Nucl Med 2005;46:1659-63
12 Gordon C. Temperature Regulation in Laboratory Rodents. New York: NY; 1993
13 Winkelmann CT, Figueroa SD, Rold TL, Volkert WA, Hoffman TJ. Microimaging characterization of a B16-F10 melanoma metastasis mouse model. Mol Imaging 2006;5:105-14
14 Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 2006;47:999-1006
15 Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy S, Toyokuni T, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000;2:118-38   DOI
16 Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: A high 1999;40:1164-75
17 Vantyghem SA, Postenka CO, Chambers AF. Estrous cycle influences organ-specific metastasis of B16F10 melanoma cells. Cancer Res 2003;63:4763-5
18 Herschman HR, Micro-PET imaging and small animal models of disease. Curr Opin Immunol 2003;15:378-84   DOI   ScienceOn
19 Jan ML, Chuang KS, Chen GW, Ni YC, Chen S, Chang CH, et al. A three-dimensional registration method for automated fusion of micro PET-CT-SPECT whole-body images. IEEE Trans. Med. Imaging 2005;24:886-93   DOI   ScienceOn
20 Herschman HR, Barrio JR, Satyamurthy N, Liang Q, MacLaren DC, Yaghoubi S, et al. Monitoring gene therapy by positron emission tomography. In Vector Targeting for Therapeutic Gene Delivery. New York: Wiley-Liss 2002;661-85
21 Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;45:784-8
22 Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, et al. Temporal progression of metastasis in lung: Cell survival, dormancy, and location dependence of metastatic ineffiency. Cancer Res 2000;60:2541-6
23 Loening AM and Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2:131-7   DOI   ScienceOn
24 Lavely WC, Scarfone C, Cevikalp H, Li R, Byme DW, Cmelak AJ, Dawant B, et al. Phantom validation of coregistration of PET and CT for image-guided radiotherapy. Med, Phys 2004;31:1083-92   DOI   ScienceOn
25 Torizuka T, Clavo AC, Wahl RL. Effect of hyperglycemia on in vitro tumor uptake of tritiated FDG, thymidine, L-methionine and L-leucine. J Nucl Med 1997;38:382-6
26 Knoess C, Siegel S, Smith A, Newport D, Richerzhagen N, Winkeler A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 2003;30:737-47   DOI   ScienceOn
27 Chow PL, Rannou FR and Chatziioannou AF. Atteunation correction for small PET tomographs. Phys Med Biol 2005;50:1837-50   DOI   ScienceOn
28 Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 2000;97:1206-11   DOI
29 Waber S, Bauer A. Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 2004;31:1545-55   DOI
30 Maintz BA, Elsen PA and Veirgever MA. 3D multimodality medical image registration using morphological tools. Image Vis. Comput 2001;19:53-62   DOI   ScienceOn
31 Rouze NC, Schmand M, Siegal S, Hutchins GD. Design of a Small Animal PET Imaging System with 1 microliter Volume Resolution. IEEE Trans Nucl Sci 2004;51:757-63   DOI   ScienceOn
32 Gambhir SS, Barrio JR, Herschman HR, Phelps ME. Assays for Non-Invasive Imaging of Reporter Gene Expression. Nuclear Medicine and Biology 1999;26: 481-90   DOI   ScienceOn
33 Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991:32:623-48
34 Chatziioannou A, Tai YC, Doshi N, Cherry SR. Detector development formicroPET II: a 1 micro resolution PET scanner for small animal imaging. Phys Med Biol 2001;46:2899-910   DOI   ScienceOn
35 Tai YC, Chatziioannou A, Siegel S, Young J, Newport D, Goble RN, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001;46:1845-62   DOI   ScienceOn
36 Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R. Detection of lymph node metastases by contrast enhanced MRI in experimental model. Magn Reson Med 2002;47:292-7   DOI   ScienceOn
37 Zaidi H and Hasegawa B. Determination of the attenuation map in emission tompgraphy. J Nucl Med 2003;44:291-315
38 LinksIshiwata K, Mizuno M, Kimura Y, Kawamura K, Oda K, Sasaki T, et al. Potential of 11C TMSX for the evaluation of adenosine A2A receptors in the skeletal muscle by positron emission tomography. Nucl Med Biol 2004;31:949-56   DOI   ScienceOn
39 Chow, PL, Stout, DB, Komisopoulou. E and Chatziioannou, AF. A method of image registration for small animal, multi-modality imaging. Phys. Med. Biol 2006;51:379-90   DOI   ScienceOn
40 Contag CH, Bachmann MH: Advances in In vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002:4:235-60   DOI   ScienceOn
41 Som P, Atkins HL., Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-Dglucose(F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980;21:670-5
42 Seemann MD, Beck R, Ziegler S. In vivo tumor imaging in mice using a state-of-the-art clinical PET/CT in comparison with a small animal PET and a small animal CT. Technol Cancer Res Treat. 2006 Oct;5(5):537-42   DOI
43 Woo SK, Lee TS, Kim KM, Kim JY, Jung JH, Kang JH, et al. Anesthesia condition for (18)F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol 2008;35:143-50   DOI   ScienceOn
44 MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, et al. Repetitive, Non-invasive Imaging of the Dopamine D2 Receptor as a Reporter Gene in Living Animals. Gene Therapy 1999;6:785-91   DOI   ScienceOn