Browse > Article

Glucosylated Polyethylenimine as a Tumor-Targeting Gene Carrier  

Park In-Kyu (School of Agricultural Biotechnology, Seoul National University)
Cook Seung-Eun (School of Agricultural Biotechnology, Seoul National University)
Kim You-Kyoung (School of Agricultural Biotechnology, Seoul National University)
Kim Hyun-Woo (School of Agricultural Biotechnology, Seoul National University)
Cho Myung-Haing (School of Agricultural Biotechnology, Seoul National University)
Jeong Hwan-Jeong (Department of Nuclear Medicine, Chonbuk National University)
Kim Eun-Mi (Department of Nuclear Medicine, Chonbuk National University)
Nah Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
Bom Hee-Seung (Department of Nuclear Medicine, Chonnam National University School of Medicine)
Cho Chong-Su (School of Agricultural Biotechnology, Seoul National University)
Publication Information
Archives of Pharmacal Research / v.28, no.11, 2005 , pp. 1302-1310 More about this Journal
Abstract
Glucosylated polyethylenimine (GPEI) was synthesized as a tumor-targeting gene carrier through facilitative glucose metabolism by tumor glucose transporter. Particle sizes of GPEI/DNA complex increased in proportion to glucose content of GPEI, whereas surface charge of the complex was not dependent on glucosylation, partially due to inefficient shielding of the short hydrophilic group introduced. GPEI with higher glucosylation (36 mol-$\%$) had no cytotoxic effect on cells even at polymer concentrations higher than 200 $\mu$g/mL. Compared to unglucosylated PEl. glucosylation induced less than one-order decrease of transfection efficiency. Transfection of GPEI/DNA complex into tumor cells possibly occurred through specific interaction between glucose-related cell receptors and glucose moiety of GPEI. Gamma imaging technique revealed GPEI/DNA complex was distributed in liver. spleen. and tumors.
Keywords
Tumor-targeting; Glucose transporter; Glucosylation; Polyethylenimine;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Chen, J., Gamou, S., Takayanagi, A., and Shimizu, N., A novel gene delivery system using EGF receptor-mediated endocytosis. FEBS Lett., 338, 167-169 (1994)   DOI   ScienceOn
2 Dang, C. V. and Semenza, G. L., Oncogenic alterations of metabolism. Trends Biochem. Sci., 24, 68-72 (1999)   DOI   PUBMED   ScienceOn
3 Dolivet, G., Merlin, J. L., Barbeli-Heyob, M., Ramacci, C., Erbacher, P., Parache, R. M., Behr, J. P., and Guillemin, F., In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector. Cancer Gene Ther., 9, 708-714 (2002)   DOI   ScienceOn
4 Ferkol, T., Kaetzel, C. S., and Davis, P. B., Gene transfer into respiratory epithelial cells by targeting the polymeric immunoglobulin receptor. J. Clin. Invest., 92, 2394-2400 (1993)   DOI   ScienceOn
5 Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., and Jain, R. K., Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U.S.A., 95, 4607- 4612 (1998)   DOI
6 Monsigny, M., Petit, C., and Roche, A. C., Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal. Biochem., 175, 525-530 (1988)   DOI   ScienceOn
7 Noguchi, Y., Saito, A., Miyagi, Y., Yamanaka, S., Marat, D., Doi, C., Yoshikawa, T., Tsuburaya, A., Ito, T., and Satoh, S., Suppression of facilitative glucose transporter 1 mRNA can suppress tumor growth. Cancer Lett., 154, 175-182 (2000)   DOI   ScienceOn
8 Ogris, M., Brunner, S., Schuller, S., Kircheis, R., and Wagner, E., PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther., 6, 595-605 (1999)   DOI   ScienceOn
9 Park, I. K., Ihm, J. E., Park, Y. H., Choi, Y. J., Kim, S. I., Kim, W. J., Akaike, T., and Cho, C. S., Preparation and characterization of galactosylated chitosan-graft-poly(vinyl pyrrolidone) as hepatocyte-targeting gene carrier. J. Controlled Rel., 86, 349- 359 (2003a)   DOI   ScienceOn
10 Pedersen, P. L., Mathupala, S., Rempel, A., Geschwind, J. F., and Ko, Y. H., Mitochondrila bound type hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochem. Biophys. Acta, 1555, 14-20 (2002)   DOI   ScienceOn
11 Wang, S., Ma, N., Gao, S.J., Yu, H., and Leong, K. W., Transgene expression in the brain stem effected by intramuscular injection of polyethylenimine/DNA complexes. Mol. Ther., 3, 658-664 (2001)   DOI   ScienceOn
12 Wheeler, T. J. and Hinkle, P. C., The glucose transporter of mammalian cells. Ann. Rev. Physiol., 47, 503-517 (1985)   DOI   ScienceOn
13 Oupicky, D., Ogris, M., and Seymour, L., Development of longcirculating polyelectrolyte complexes for systemic delivery of genes. J. Drug Targeting, 10, 93-98 (2002)   DOI   ScienceOn
14 Ogris, M. and Wagner, E., Targeting tumors with non-viral gene delivery systems. Drug Discovery Today, 15, 479-485 (2002)
15 Densmore, C. L., Orson, F. M., Xu, B., Kinsey, B. M., Waldrep, J. C., Hua, P., Bhogal, B., and Knight, V., Aerosol delivery of robust polyethylenimine-DNA complexes for gene therapy and genetic immunization. Mol. Ther., 1, 180-188 (2000)   DOI   ScienceOn
16 Hatanaka, M., Transport of sugars in tumor membranes. Biochem. Biophys. Acta, 355, 77-104 (1974)
17 Park, I. K., Park, Y. H., Shin, B. A., Choi, E. S., Kim, Y. R., Akaike, T., and Cho, C. S., Galactosylated chitosan-graftdextran as hepatocyte-targeting DNA carrier. J. Controlled Rel., 69, 97-10 (2000)   DOI   ScienceOn
18 Kircheis, R., Wightman, L., Schreiber, A., Robitza, B., Rossler, V., Kursa, M., and Wagner, E., Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther., 8, 28-40 (2001)   DOI   ScienceOn
19 Park, I. K., Kim, T. H., Kweon, H. Y., Park, Y. H., Kim, W. J., Akaike, T., and Cho, C. S., Visualization of transfection of galactosylated chitosan-graft-poly(ethylene glycol)/DNA complexes into hepatocytes by confocal Laser Scanning Microscopy. Int. J. Pharm., 257, 103-110 (2003b)   DOI   PUBMED   ScienceOn
20 Luciani, A., Olivier, J. C., Clement, O., Siauve, N., Brillet, P. Y., Bessoud, B., Gazeau, F., Uchegbu, I. F., Kahn, E., Frija, G., and Cuenod, C. A., Glucose-receptor MR imaging of tumor: study in mice with pegylated paramagnetic niosomes. Radiology, 231, 135-142 (2004)   DOI   ScienceOn
21 Park, I. K., Yang, J., Jeong, H. J., Bom, H. S., Harada, I., Akaike, T., Kim, S. I., and Cho, C. S., Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials, 24, 2331-2337 (2003c)   DOI   ScienceOn
22 Kursa, M., Walker, G. F., Roessler, V., Ogris, M., Roedl, W., Kircheis, R., and Wagner, E., Novel shielded transferrinpolyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjugate Chem., 14, 222-231 (2003)   DOI   ScienceOn
23 Rudolph, C., Lausier, J., Naundorf, S., Muller, R. H., and Rosenecker, J., In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med., 2, 269-278 (2000)   DOI   ScienceOn
24 Park, I. K., Kim, T. H., Park, Y. H., Shin, B. A., Choi, E. S., Chowdhury, E. H., Akaike, T., and Cho, C. S., Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J. Controlled Rel., 76, 349-362 (2001)   DOI   ScienceOn
25 Wagner, E., Zenke, M., Cotten, M., Beug, H., and Birnsteil, M. L., Transferrin-polycation conjugates as Carriers for DNA Uptake into Cells. Proc. Natl. Acad. Sci. U.S.A., 87, 3410- 3414 (1990)   DOI
26 Leamon, C. P., Weigl, D., and Hendren, R. W., Folate copolymer-mediated transfection of cultured cells. Bioconjugate Chem., 10, 947-957 (1999)   DOI   ScienceOn
27 Nomura, T., Nakajima, S., Kawabata, K., Yamashita, F., Takakura, Y., and Hashita, M., Intratumoral pharmacokinetics and in-vivo gene expression of naked plasmid DNA and its cationic liposome complexes after direct gene transfer. Cancer Res., 57, 2681-2686 (1997)
28 Ahn, C. H., Chae, S. Y., Bae, Y. H., and Kim, S. W., Synthesis of biodegradable multi-block copolymers of poly(L-lysine) and poly(ethylene glycol) as a non-viral gene carrier. J. controlled Rel., 97, 567-574 (2004)
29 Aoki, K., Furuhata, S., Hatanaka, K., Maeda, M., Remy, J. S., Behr, J. P., Terada, M., and Yoshida, T., Polyethyleniminemediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther., 8, 508-514 (2001)   DOI   ScienceOn
30 Pelisek, J., Engelmann, M. G., Golda, A., Fuchs, A., Armeanu, S., Shimizu, M., Mekkaoui, C., Rolland, P. H., and Nikol, S., Optimization of nonviral transfection: variables influencing liposome-mediated gene transfer in proliferating vs. quiescent cells in culture and in vivo using a porcine restenosis model. J. Mol. Med., 80, 724-736 (2002)   DOI   ScienceOn
31 Kunath, K., Harpe, A. V., Fischer, D., and Kissel, T., Galactose- PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J. Controlled Rel., 88, 159-172 (2003)   DOI   ScienceOn
32 Baban, D. F. and Seymour, L. W., Control of tumour vascular permeability. Adv. Drug Deliv. Rev., 16, 285-294 (1995)   DOI   ScienceOn
33 Ferkol, T., Perales, J. C., Mularo, F., and Hanson, R., Receptormediated gene transfer into macrophages. Proc. Natl. Acad. Sci. U.S.A., 93, 101-105 (1996)   DOI
34 Ogris, M. and Wagner, E., Tumor-targeted gene transfer with DNA polyplexes. Somat. Cell Mol. Genet., 27, 85-95 (2002)   DOI   ScienceOn
35 Bettinger, T., Remy, J. S., and Erbacher, P., Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated transfer into hepatocytes. Bioconjugate Chem., 10, 1243- 1251 (1999)   DOI   ScienceOn
36 Erbacher, P., Bousser, M. T., Raimond, J., Monsigny, M., Midoux, P., and Roche, A. C., Gene transfer by DNA/glycosylated polylysine complexed into human blood monocyte-derived macrophages. Hum. Gene Ther., 10, 721-729 (1996)   DOI   ScienceOn
37 Kim, H. W., Park, I. K., Cho, C. S., Lee, K. H., Beck Jr, G. R., Colburn, N. H., and Cho, M. H., Aerosol delivery of glucosylated polyethylenimine (GPEI)/PTEN complex suppresses Akt downstream pathways in the lung of K-ras null mice. Cancer Res., 64, 7671-7676 (2004)
38 Merlin, J. L., Dolivet, G., Dubessy, C., Festor, E., Parache, R. M., Verneuil, L., Erbacher, P., Behr, J. P., and Guillemin, F., Improvement of nonviral p53 gene transfer in human carcinoma cells using glucosylated polyethylenimine derivatives. Cancer Gene Ther., 8, 203-210 (2001)   DOI   ScienceOn
39 Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. U.S.A., 92, 7297-7301 (1995)   DOI   ScienceOn