• Title/Summary/Keyword: Tumor angiogenesis

Search Result 325, Processing Time 0.03 seconds

Chemopreventive Allylthiopyridazines, K compounds, Inhibit Invasion, Migration and Angiogenesis in SK-Hep-1 Hepatocarcinoma Cells Possibly via MMP-2 Downregulation

  • Lee, Eun-Jung;Shin, Ilc-Hung;Kwon, Soon-Kyung
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.218.1-218.1
    • /
    • 2003
  • Dietary organosulfur compounds have been shown to inhibit the proliferation of tumor cells. Synthetic sulfur-containing compounds including oltipraz exert chemopreventive and hepatoprotective effects. We previously showed that synthetic allylthiopyridazine derivatives designated as K compounds induced apoptosis in SK-Hep-1 hepatocarcinoma cells (Eur. J. Cancer: 37, 2104-10, 2001). (omitted)

  • PDF

The in vivo photothermal treatment of gold nanorod in the mouse ear model

  • Liu, Bruce Yao Wen;Chen, Cheng-Lung;Lee, Shin-Yu;Chang, Fu-Hsiung;Lin, Win-Li;Chia, Chih-Ta;Chen, Yang-Yuan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • Gold nanorod's exceptional light to heat transduction is a robust phonomenon that has been extensively verified. The phenomenon is a trait from which many novel applications across disciplines have been proposed. In this investigation, the feasibility of utilizing heat harvested from such photothermal method to combat cancer is presented. Using non-invasive laser methods, an in vivo study is conducted on mouse ear tumors administered with gold nanorods (Au NRs). An emphasis is placed on monitoring the tumor developments after photothermal treatments, over time. The findings reveal significant tumor growth surpression at a threshold laser power of $0.6W/cm^2$ lasting 2 minutes; this energy also brought about dramatic size reduction in treated tumors. Furthermore, the apparent formation of an eschar over the laser treated region indicates extensive hemorrhagic necrosis of the tumor tissue; a phenomenon implicative to the inhibition of angiogenesis.

Development of human tumor necrosis factor-α muteins with improved therapeutic potential

  • Jang, Seung-Hwan;Kim, Hyo-Jin;Cho, Kwang-Hwi;Shin, Hang-Cheol
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.260-264
    • /
    • 2009
  • Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) exhibits cytotoxicity towards various tumor cells in vitro and induces apoptotic necrosis in transplanted tumors in vivo. It also shows severe toxicity when used systemically for the treatment of cancer patients, hampering the development of TNF-$\alpha$ as a potential anticancer drug. In order to understand the structure-function relation of TNF-$\alpha$ with respect to receptor binding, we selected four regions on the bottom of the TNF-$\alpha$ trimer that are in close contact with the receptor and carried out mutagenesis studies and computational modeling. From the study, various TNF-$\alpha$ muteins with a high therapeutic index were identified. These results will provide a structural basis for the design of highly potent TNF-$\alpha$ for therapeutic purposes. By conjugating TNF-$\alpha$ muteins with a high therapeutic index to a fusion partner, which targets a marker of angiogenesis, it could be possible to develop TNF-$\alpha$ based anticancer drugs.

Expression of Osteopontin in Non-small Cell Lung Cancer and Correlative Relation with Microvascular Density

  • Yu, Ting-Ting;Han, Zhi-Gang;Shan, Li;Tao, Jie;Zhang, Tao;Yuan, Shuai-Fei;Shen, Hong-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.29-32
    • /
    • 2014
  • Background and Objective: Lung cancer is one of the malignant diseases which most seriously threat humansurvival and development. This study aimed to assess osteopontin (OPN) expression in non-small cell lung cancer (NSCLC) and any relationship with clinicopathological features. Methods: Immunohistochemistry was used to determine OPN expression and microvascular density (MVD) in 120 cases of NSCLC also undergoing clinical assessment. Results: Moderately positive expression of OPN was found in 34.6% (41/120) and strong expression in 47.5% (57/120) of the NSCLCs; OPN expression in carcinomas was higher than in pericarcinoma tissues (P<0.05). While no obvious association was observed with NSCLC patient age, gender, maximum diameter of the tumor and pathological type, OPN expression was more commonly detected in poorly differentiated carcinoma tissue and lymph node metastasis as well as at advanced clinical stage (P<0.05); OPN expression in cancer tissue was positively correlated with MVD (r = 0.839, P = 0.000). Conclusion: OPN plays an important role in promoting tumor angiogenesis and progress of NSCLCs and has the possibility to become the new target for therapy.

Suppressed CD31 Expression in Sarcoma-180 Tumors after Injection with Toxoplasma gondii Lysate Antigen in BALB/c Mice

  • Pyo, Kyoung-Ho;Jung, Bong-Kwang;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.2
    • /
    • pp.171-174
    • /
    • 2010
  • The anti-tumorigenic effects of Toxoplasma gondii (RH) antigens were studied in a murine sarcoma-180 tumor model. To determine the anti-tumor effects, the reduction in tumor size and expression of CD31 (an angiogenesis marker in the tumor tissue) were examined after injection of BALB/c mice with T. gondii lysate antigen (TLA) or formalin-fixed, proliferation-inhibited, T. gondii tachyzoites. Tumors were successfully produced by an intradermal injection of sarcoma-180 cells with plain Matrigel in the mid-backs of mice. After injection with TLA or formalin-fixed T. gondii tachyzoites, the increase in tumor size and weight nearly stopped while tumor growth continued in control mice that were injected with PBS. CD31 expression in TLA-treated or formalin-fixed T. gondii-injected mice was lower than the control mice. Accordingly, the present study shows that the treatment of mice with formalin-fixed T. gondii or TLA in the murine sarcoma-180 tumor model results in a decrease of both tumor size and CD31 expression.

Therapeutic Application of Nitric Oxide in Human Diseases

  • NamKoong, Seung;Kim, Young-Myeong
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.351-362
    • /
    • 2010
  • Nitric oxide (NO), synthesized from L-arginine by three isoforms of NO synthase (NOS), is a gaseous signaling molecule with an astonishingly wide range of biological and pathophysiological activities, including vasorelaxation, angiogenesis, anti-inflammation, and anti-apoptosis in mammalian cells. Recent studies have shown that NO donors and inhaled NO convert to biologically active NO under biological conditions and act as a signaling molecule in pathophysiological conditions. This review will discuss the roles of NO and its potential therapeutic implication in various human diseases, such as tumor, vascular regeneration, hypertension, wound healing, and ischemia-reperfusion injury.

Implications of telomerase reverse transcriptase in tumor metastasis

  • Zou, Yongkang;Cong, Yu-sheng;Zhou, Junzhi
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.458-465
    • /
    • 2020
  • Metastasis is the main culprit of the great majority of cancerrelated deaths. However, the complicated process of the invasion-metastasis cascade remains the least understood aspect of cancer biology. Telomerase plays a pivotal role in bypassing cellular senescence and sustaining the cancer progression by maintaining telomere homeostasis and genomic integrity. Telomerase reverse transcriptase (TERT) exerts a series of fundamental functions that are independent of its enzymatic cellular activity, including proliferation, inflammation, epithelia-mesenchymal transition (EMT), angiogenesis, DNA repair, and gene expression. Accumulating evidence indicates that TERT may facilitate most steps of the invasion-metastasis cascade. In this review, we summarize important advances that have revealed some of the mechanisms by which TERT facilitates tumor metastasis, providing an update on the non-canonical functions of telomerase beyond telomere maintaining.

Roles of Matrix Metalloproteinase-9 in Cancer Metastasis

  • Kang, Hyereen;Jang, Sung-Wuk
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.103-110
    • /
    • 2014
  • Matrix metalloproteinases (MMPs), also called matrixins, function in the extracellular environment of cells and degrade both matrix and non-matrix proteins. They are multidomain proteins and their activities are regulated by tissue inhibitor of metalloproteinases (TIMPs). The uncontrolled regulation of MMPs is involved in various pathologic processes, such as tumor invasion, migration, host immune escape, extravasation, angiogenesis, and tumor growth. Especially, matrix metalloproteinase-9 (MMP-9) is one of the metastasis-accelerating genes involved in metastasis of various types of human cancers. Here, we review the member of MMP family and discusses their domain structure and function, enzyme activation, the mechanism of inhibition by TIMPs. In particular, we focus the role of MMP-9 in relation to cancer metastasis.

Pleiotropic Roles of Metalloproteinases in Hematological Malignancies: an Update

  • Chaudhary, Ajay K;Chaudhary, Shruti;Ghosh, Kanjaksha;Nadkarni, A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3043-3051
    • /
    • 2016
  • Controlled remodeling of the extracellular matrix (ECM) is essential for cell growth, invasion and metastasis. Matrix metalloproteinases (MMPs) are a family of secreted, zinc-dependent endopeptidases capable of degradation of ECM components. The expression and activity of MMPs in a variety of human cancers have been intensively studied. They play important roles at different steps of malignant tumor formation and have central significance in embryogenesis, tissue remodeling, inflammation, angiogenesis and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis. Recent studies also suggest that MMPs play complex roles in tumor progression. MMPs and membrane type (MT)-MMPs are potentially significant therapeutic targets in many cancers, so that designing of specific MMP inhibitors would be helpful for clinical trials. Here, we review the pleiotropic roles of the MMP system in hematological malignancies in-vitro and in-vivo models.

Review on Targeted Treatment of Patients with Advanced-Stage Renal Cell Carcinoma: A Medical Oncologist's Perspective

  • Tanriverdi, Ozgur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.609-617
    • /
    • 2013
  • Renal cell carcinomas make up 3% of all cancers and one in four patients is metastatic at time of diagnosis. This cancer is one of the most resistant to cytotoxic chemotherapy. Studies have shown that the efficiency of interferon-alpha and/or interleukin-2 based immune therapies is limited in patients with metastatic renal cell carcinoma but latest advances in molecular biology and genetic science have resulted in better understanding of its biology. Tumor angiogenesis, tumor proliferation and metastasis develop by the activation of signal message pathways playing a role in the development of renal cell carcinomas. Better definition of these pathways has caused an increase in preclinic and clinical studies into target directed treatment of renal cell carcinoma. Many recent studies have shown that numerous anti-angiogenic agents have marked clinical activity. In this article, the focus is on general characteristics of molecular pathways playing a major role in renal cell carcinoma, reviewing clinical information onagents used in the target directed treatment of metastatic lesions.