Browse > Article
http://dx.doi.org/10.4062/biomolther.2010.18.4.351

Therapeutic Application of Nitric Oxide in Human Diseases  

NamKoong, Seung (Medical & Bio-Material Research Center and Department of Physical Therapy, College of Health and Welfare, Kangwon National University)
Kim, Young-Myeong (Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
Publication Information
Biomolecules & Therapeutics / v.18, no.4, 2010 , pp. 351-362 More about this Journal
Abstract
Nitric oxide (NO), synthesized from L-arginine by three isoforms of NO synthase (NOS), is a gaseous signaling molecule with an astonishingly wide range of biological and pathophysiological activities, including vasorelaxation, angiogenesis, anti-inflammation, and anti-apoptosis in mammalian cells. Recent studies have shown that NO donors and inhaled NO convert to biologically active NO under biological conditions and act as a signaling molecule in pathophysiological conditions. This review will discuss the roles of NO and its potential therapeutic implication in various human diseases, such as tumor, vascular regeneration, hypertension, wound healing, and ischemia-reperfusion injury.
Keywords
Nitric oxide; Therapy; Nitric oxide donors; Nitric oxide synthase; Tumor; Ischemia-reperfusion injury;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., Kearney, M., Chen, D., Symes, J. F., Fishman, M. C., Huang, P. L. and Isner, J. M. (1998). Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567-2578.   DOI
2 Namkoong, S., Chung, B. H., Ha, K. S., Lee, H., Kwon, Y. G. and Kim, Y. M. (2008). Microscopic technique for the detection of nitric oxide-dependent angiogenesis in an animal model. Methods Enzymol. 441, 393-402.   DOI
3 Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064.   DOI
4 Nathan, C. (1997). Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest. 100, 2417-2423.   DOI
5 Nathan, C. and Xie, Q. W. (1994). Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 269, 13725-13728.
6 Papapetropoulos, A., Garcia-Cardena, G., Madri, J. A. and Sessa, W. C. (1997). Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest. 100, 3131- 139.   DOI
7 Lang, J. D. Jr., Teng, X., Chumley, P., Crawford, J. H., Isbell, T. S., Chacko, B. K., Liu, Y., Jhala, N., Crowe, D. R., Smith, A. B., Cross, R. C., Frenette, L., Kelley, E. E., Wilhite, D. W., Hall, C. R., Page, G. P., Fallon, M. B., Bynon, J. S., Eckhoff, D. E. and Patel, R. P. (2007). Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J. Clin. Invest. 117, 2583-2591.   DOI
8 Le, X., Wei, D., Huang, S., Lancaster, J. R. Jr. and Xie, K. (2005). Nitric oxide synthase II suppresses the growth and metastasis of human cancer regardless of its up-regulation of protumor factors. Proc. Natl. Acad. Sci. USA. 102, 8758- 8763.   DOI
9 Lee, P. C., Salyapongse, A. N., Bragdon, G. A., Shears, L. L. 2nd, Watkins, S. C., Edington, H. D. and Billiar, T. R. (1999). Impaired wound healing and angiogenesis in eNOS-deficient mice. Am. J. Physiol. 277, H1600-1608.
10 Li, J., Billiar, T. R., Talanian, R. V. and Kim, Y. M. (1997). Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun. 240, 419-424.   DOI
11 Li, Q., Guo, Y., Xuan, Y. T., Lowenstein, C. J., Stevenson, S. C., Prabhu, S. D., Wu, W. J., Zhu, Y. and Bolli, R. (2003). Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism. Circ. Res. 92, 741-748.   DOI
12 Lima, B., Forrester, M. T., Hess, D. T. and Stamler, J. S. (2010). S-nitrosylation in cardiovascular signaling. Circ. Res. 106, 633-646.   DOI
13 Lowson, S. M. (2004). Alternatives to nitric oxide. Br. Med. Bull. 70, 119-131.   DOI
14 Marletta, M. A., Hurshman, A. R. and Rusche, K. M. (1998). Catalysis by nitric oxide synthase. Curr. Opin. Chem. Biol. 2, 656-663.   DOI
15 Matthews, N. E., Adams, M. A., Maxwell, L. R., Gofton, T. E. and Graham, C. H. (2001). Nitric oxide-mediated regulation of chemosensitivity in cancer cells. J. Natl. Cancer Inst. 93, 1879-1885.   DOI
16 Kisley, L. R., Barrett, B. S., Bauer, A. K., Dwyer-Nield, L. D., Barthel, B., Meyer, A. M., Thompson, D. C. and Malkinson, A. M. (2002). Genetic ablation of inducible nitric oxide synthase decreases mouse lung tumorigenesis. Cancer Res. 62, 6850-6856.
17 Kroncke, K. D., Fehsel, K. and Kolb-Bachofen, V. (1997). Nitric oxide: cytotoxicity versus cytoprotection--how, why, when, and where? Nitric Oxide. 1, 107-120.   DOI
18 Kiziltepe, T., Hideshima, T., Ishitsuka, K., Ocio, E. M., Raje, N., Catley, L., Li, C. Q., Trudel, L. J., Yasui, H., Vallet, S., Kutok, J. L., Chauhan, D., Mitsiades, C. S., Saavedra, J. E., Wogan, G. N., Keefer, L. K., Shami, P. J. and Anderson, K. C. (2007). JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110, 709-718.   DOI
19 Konopka, T. E., Barker, J. E., Bamford, T. L., Guida, E., Anderson, R. L. and Stewart, A. G. (2001). Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor production. Cancer Res. 61, 3182-3187.
20 Kroncke, K. D. (2003). Nitrosative stress and transcription. Biol. Chem. 384, 1365-1377.   DOI
21 Kumar, D., Branch, B. G., Pattillo, C. B., Hood, J., Thoma, S., Simpson, S., Illum, S., Arora, N., Chidlow, J. H., Jr., Langston, W., Teng, X., Lefer, D. J., Patel, R. P. and Kevil, C. G. (2008). Chronic sodium nitrite therapy augments ischemiainduced angiogenesis and arteriogenesis. Proc. Natl. Acad. Sci. USA. 105, 7540-7545.   DOI
22 Kuroki, I., Miyazaki, T., Mizukami, I., Matsumoto, N. and Matsumoto, I. (2004). Effect of sodium nitroprusside on ischemia-reperfusion injuries of the rat liver. Hepatogastroenterology 51, 1404-1407.
23 Lala, P. K. and Chakraborty, C. (2001). Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2, 149-156.   DOI
24 Kanno, S., Lee, P. C., Zhang, Y., Ho, C., Griffith, B. P., Shears, L. L. 2nd and Billiar, T. R. (2000). Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation 101, 2742-2748.   DOI   ScienceOn
25 Kim, Y. M., Chung, H. T., Simmons, R. L. and Billiar, T. R. (2000). Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. J. Biol. Chem. 275, 10954-10961.   DOI
26 Kim, Y. M., Bergonia, H. and Lancaster, J. R. Jr. (1995a). Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett. 374, 228-232.   DOI
27 Kim, Y. M., Bergonia, H. A., Muller, C., Pitt, B. R., Watkins, W. D. and Lancaster, J. R. Jr. (1995b). Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J. Biol. Chem. 270, 5710-5713.   DOI
28 Kim, Y. M., Chung, H. T., Kim, S. S., Han, J. A., Yoo, Y. M., Kim, K. M., Lee, G. H., Yun, H. Y., Green, A., Li, J., Simmons, R. L. and Billiar, T. R. (1999). Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J. Neurosci. 19, 6740-6747.   DOI
29 Kim, Y. M., de Vera, M. E., Watkins, S. C. and Billiar, T. R. (1997a). Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J. Biol. Chem. 272, 1402-1411.   DOI
30 Kim, Y. M., Talanian, R. V. and Billiar, T. R. (1997b). Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem. 272, 31138-31148.   DOI
31 Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D'Acquisto, F., Addeo, R., Makuuchi, M. and Esumi, H. (2000). Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor- 1 activity by nitric oxide. Blood 95, 189-197.
32 Johnson, T. A., Stasko, N. A., Matthews, J. L., Cascio, W. E., Holmuhamedov, E. L., Johnson, C. B. and Schoenfisch, M. H. (2010). Reduced ischemia/reperfusion injury via glutathioneinitiated nitric oxide-releasing dendrimers. Nitric Oxide 22, 30-36.   DOI
33 Huang, Z., Shiva, S., Kim-Shapiro, D. B., Patel, R. P., Ringwood, L. A., Irby, C. E., Huang, K. T., Ho, C., Hogg, N., Schechter, A. N. and Gladwin, M. T. (2005). Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J. Clin. Invest. 115, 2099-2107.   DOI
34 Hunter, C. J., Dejam, A., Blood, A. B., Shields, H., Kim-Shapiro, D. B., Machado, R. F., Tarekegn, S., Mulla, N., Hopper, A. O., Schechter, A. N., Power, G. G. and Gladwin, M. T. (2004). Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat. Med. 10, 1122- 1127.   DOI
35 Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. and Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA. 84, 9265-9269.   DOI
36 Jones, S. P., Greer, J. J., Kakkar, A. K., Ware, P. D., Turnage, R. H., Hicks, M., van Haperen, R., de Crom, R., Kawashima, S., Yokoyama, M. and Lefer, D. J. (2004). Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am. J. Physiol. Heart. Circ. Physiol. 286, H276-282.   DOI
37 Jun, C. D., Choi, B. M., Hoon, R., Um, J. Y., Kwak, H. J., Lee, B. S., Paik, S. G., Kim, H. M. and Chung, H. T. (1994). Synergistic cooperation between phorbol ester and IFN-$\gamma$ for induction of nitric oxide synthesis in murine peritoneal macrophages. J. Immunol. 153, 3684-3690.
38 Jung, K. H., Chu, K., Ko, S. Y., Lee, S. T., Sinn, D. I., Park, D. K., Kim, J. M., Song, E. C., Kim, M. and Roh, J. K. (2006). Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke 37, 2744-2750.   DOI
39 Ghofrani, H. A., Hoeper, M. M., Halank, M., Meyer, F. J., Staehler, G., Behr, J., Ewert, R., Weimann, G. and Grimminger, F. (2010). Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a phase II study. Eur. Respir. J. 36, 792-799.   DOI   ScienceOn
40 Gath, I., Closs, E. I., Godtel-Armbrust, U., Schmitt, S., Nakane, M., Wessler, I. and Forstermann, U. (1996). Inducible NO synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: implications for contractile function. FASEB J. 10, 1614-1620.   DOI
41 Granger, D. L., Taintor, R. R., Cook, J. L. and Hibbs, J. B. Jr. (1980). Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J. Clin. Invest. 65, 357-370.   DOI
42 Ha, K. S., Kim, K. M., Kwon, Y. G., Bai, S. K., Nam, W. D., Yoo, Y. M., Kim, P. K., Chung, H. T., Billiar, T. R. and Kim, Y. M. (2003). Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J. 17, 1036-1047.   DOI
43 Hibbs, J. B. Jr., Taintor, R. R. and Vavrin, Z. (1987). Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473-476.   DOI
44 Hibbs, J. B. Jr., Taintor, R. R., Vavrin, Z. and Rachlin, E. M. (1988). Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87-94.   DOI
45 Huang, L. E., Willmore, W. G., Gu, J., Goldberg, M. A. and Bunn, H. F. (1999). Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J. Biol. Chem. 274, 9038- 9044.   DOI
46 Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., Bevan, J. A. and Fishman, M. C. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239-242.   DOI
47 Forstermann, U., Kleinert, H., Gath, I., Schwarz, P., Closs, E. I. and Dun, N. J. (1995). Expression and expressional control of nitric oxide synthases in various cell types. Adv. Pharmacol. 34, 171-186.   DOI
48 Fleming, I., Fisslthaler, B., Dimmeler, S., Kemp, B. E. and Busse, R. (2001). Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ. Res. 88, E68-75.   DOI
49 Folkman, J. and Shing, Y. (1992). Angiogenesis. J. Biol. Chem. 267, 10931-10934.
50 Forrester, K., Ambs, S., Lupold, S. E., Kapust, R. B., Spillare, E. A., Weinberg, W. C., Felley-Bosco, E., Wang, X. W., Geller, D. A., Tzeng, E., Billiar, T. R. and Harris, C. C. (1996). Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc. Natl. Acad. Sci. USA. 93, 2442-2447.   DOI
51 Foster, M. W., Hess, D. T. and Stamler, J. S. (2009). Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med. 15, 391-404.   DOI
52 Fukumura, D., Gohongi, T., Kadambi, A., Izumi, Y., Ang, J., Yun, C. O., Buerk, D. G., Huang, P. L. and Jain, R. K. (2001). Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. USA. 98, 2604-2609.   DOI
53 Furchgott, R. F. and Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376.   DOI
54 Garg, U. C. and Hassid, A. (1989). Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. Clin. Invest. 83, 1774-1777.   DOI
55 Dulak, J., Jozkowicz, A., Dembinska-Kiec, A., Guevara, I., Zdzienicka, A., Zmudzinska-Grochot, D., Florek, I., Wojtowicz, A., Szuba, A. and Cooke, J. P. (2000). Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 659-666.   DOI   ScienceOn
56 deRojas-Walker, T., Tamir, S., Ji, H., Wishnok, J. S. and Tannenbaum, S. R. (1995). Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem. Res. Toxicol. 8, 473-477.   DOI
57 Dezfulian, C., Raat, N., Shiva, S. and Gladwin, M. T. (2007). Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovasc. Res. 75, 327-338.   DOI
58 Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R. and Zeiher, A. M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605.   DOI
59 Duranski, M. R., Greer, J. J., Dejam, A., Jaganmohan, S., Hogg, N., Langston, W., Patel, R. P., Yet, S. F., Wang, X., Kevil, C. G., Gladwin, M. T. and Lefer, D. J. (2005). Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest. 115, 1232-1240.   DOI
60 Edwards, C., Feng, H. Q., Reynolds, C., Mao, L. and Rockey, D. C. (2008). Effect of the nitric oxide donor V-PYRRO/NO on portal pressure and sinusoidal dynamics in normal and cirrhotic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1311-1317.   DOI
61 Elfering, S. L., Sarkela, T. M. and Giulivi, C. (2002). Biochemistry of mitochondrial nitric-oxide synthase. J. Biol. Chem. 277, 38079-38086.   DOI
62 Elrod, J. W., Greer, J. J., Bryan, N. S., Langston, W., Szot, J. F., Gebregzlabher, H., Janssens, S., Feelisch, M. and Lefer, D. J. (2006). Cardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury. Arterioscler. Thromb. Vasc. Biol. 26, 1517-1523.   DOI
63 Chung, B. H., Lee, J. J., Kim, J. D., Jeoung, D., Lee, H., Choe, J., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2010). Angiogenic activity of sesamin through the activation of multiple signal pathways. Biochem. Biophys. Res. Commun. 391, 254-260.   DOI
64 Chazotte-Aubert, L., Hainaut, P. and Ohshima, H. (2000). Nitric oxide nitrates tyrosine residues of tumor-suppressor p53 protein in MCF-7 cells. Biochem. Biophys. Res. Commun. 267, 609-613.   DOI
65 Chinje, E. C. and Stratford, I. J. (1997). Role of nitric oxide in growth of solid tumours: a balancing act. Essays Biochem. 32, 61-72.
66 Chung, B. H., Kim, J. D., Kim, C. K., Kim, J. H., Won, M. H., Lee, H. S., Dong, M. S., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2008). Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells. Biochem. Biophys. Res. Commun. 376, 404-408.   DOI
67 Chung, H. T., Pae, H. O., Choi, B. M., Billiar, T. R. and Kim, Y. M. (2001). Nitric oxide as a bioregulator of apoptosis. Biochem. Biophys. Res. Commun. 282, 1075-1079.   DOI
68 Cosby, K., Partovi, K. S., Crawford, J. H., Patel, R. P., Reiter, C. D., Martyr, S., Yang, B. K., Waclawiw, M. A., Zalos, G., Xu, X., Huang, K. T., Shields, H., Kim-Shapiro, D. B., Schechter, A. N., Cannon, R. O. 3rd and Gladwin, M. T. (2003). Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498-1505.   DOI
69 Dash, P. R., Cartwright, J. E., Baker, P. N., Johnstone, A. P. and Whitley, G. S. (2003). Nitric oxide protects human extravillous trophoblast cells from apoptosis by a cyclic GMP-dependent mechanism and independently of caspase 3 nitrosylation. Exp. Cell. Res. 287, 314-324.   DOI
70 Date, H., Triantafillou, A. N., Trulock, E. P., Pohl, M. S., Cooper, J. D. and Patterson, G. A. (1996). Inhaled nitric oxide reduces human lung allograft dysfunction. J. Thorac. Cardiovasc. Surg. 111, 913-919.   DOI
71 Archer, S. L., Huang, J. M., Hampl, V., Nelson, D. P., Shultz, P. J. and Weir, E. K. (1994). Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 91, 7583-7587.   DOI
72 Ahem, G. P., Klyachko, V. A. and Jackson, M. B. (2002). cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci. 25, 510-517.   DOI
73 Ahn, B. and Ohshima, H. (2001). Suppression of intestinal polyposis in Apc (Min/+) mice by inhibiting nitric oxide production. Cancer Res. 61, 8357-8360.
74 Andrade, S. P., Hart, I. R. and Piper, P. J. (1992). Inhibitors of nitric oxide synthase selectively reduce flow in tumorassociated neovasculature. Br. J. Pharmacol. 107, 1092-1095.   DOI   ScienceOn
75 Beghetti, M., Habre, W., Friedli, B. and Berner, M. (1995). Continuous low dose inhaled nitric oxide for treatment of severe pulmonary hypertension after cardiac surgery in paediatric patients. Br. Heart J. 73, 65-68.   DOI
76 Bell, R. M., Maddock, H. L. and Yellon, D. M. (2003). The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart. Cardiovasc. Res. 57, 405-415.   DOI
77 Brune, B., von Knethen, A. and Sandau, K. B. (1998). Nitric oxide and its role in apoptosis. Eur. J. Pharmacol. 351, 261-272.   DOI
78 Brune, B. and Zhou, J. (2007). Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc. Res. 75, 275-282.   DOI
79 Yerebakan, C., Ugurlucan, M., Bayraktar, S., Bethea, B. T. and Conte, J. V. (2009). Effects of inhaled nitric oxide following lung transplantation. J. Card. Surg. 24, 269-274.   DOI
80 Wei, D., Richardson, E. L., Zhu, K., Wang, L., Le, X., He, Y., Huang, S. and Xie, K. (2003). Direct demonstration of negative regulation of tumor growth and metastasis by host-inducible nitric oxide synthase. Cancer Res. 63, 3855-3859.
81 Yim, C. Y., Bastian, N. R., Smith, J. C., Hibbs, J. B. Jr. and Samlowski, W. E. (1993). Macrophage nitric oxide synthesis delays progression of ultraviolet light-induced murine skin cancers. Cancer Res. 53, 5507-5511.
82 Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H. T., Donnini, S., Granger, H. J. and Bicknell, R. (1997). Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J. Clin. Invest. 99, 2625-2634.   DOI
83 Yu, J., deMuinck, E. D., Zhuang, Z., Drinane, M., Kauser, K., Rubanyi, G. M., Qian, H. S., Murata, T., Escalante, B. and Sessa, W. C. (2005). Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc. Natl. Acad. Sci. USA. 102, 10999-11004.   DOI
84 Zech, B., Kohl, R., von Knethen, A. and Brune, B. (2003). Nitric oxide donors inhibit formation of the Apaf-1/caspase-9 apoptosome and activation of caspases. Biochem. J. 371, 1055-1064.   DOI
85 Zhang, R., Wang, L., Zhang, L., Chen, J., Zhu, Z., Zhang, Z. and Chopp, M. (2003). Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ. Res. 92, 308-313.   DOI
86 Surks, H. K. (2007). cGMP-dependent protein kinase I and smooth muscle relaxation: a tale of two isoforms. Circ. Res. 101, 1078-1080.   DOI
87 Tatoyan, A. and Giulivi, C. (1998). Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J. Biol. Chem. 273, 11044-11048.   DOI
88 Taylor, C. T. and Moncada, S. (2010). Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler. Thromb. Vasc. Biol. 30, 643-647.   DOI
89 Thatcher, G. R. (2005). An introduction to NO-related therapeutic agents. Curr. Top. Med. Chem. 5, 597-601.   DOI
90 Thebaud, B., Arnal, J. F., Mercier, J. C. and Dinh-Xuan, A. T. (1999). Inhaled and exhaled nitric oxide. Cell Mol. Life Sci. 55, 1103-1112.   DOI
91 Trikha, P., Sharma, N. and Athar, M. (2001). Nitroglycerin: a NO donor inhibits TPA-mediated tumor promotion in murine skin. Carcinogenesis 22, 1207-1211.   DOI
92 Tripatara, P., Patel, N. S., Webb, A., Rathod, K., Lecomte, F. M., Mazzon, E., Cuzzocrea, S., Yaqoob, M. M., Ahluwalia, A. and Thiemermann, C. (2007). Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J. Am. Soc. Nephrol. 18, 570-580.   DOI
93 Tsuchiya, K., Kanematsu, Y., Yoshizumi, M., Ohnishi, H., Kirima, K., Izawa, Y., Shikishima, M., Ishida, T., Kondo, S., Kagami, S., Takiguchi, Y. and Tamaki, T. (2005). Nitrite is an alternative source of NO in vivo. Am. J. Physiol. Heart. Circ. Physiol. 288, H2163-2170.   DOI
94 Webb, A., Bond, R., McLean, P., Uppal, R., Benjamin, N. and Ahluwalia, A. (2004). Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl. Acad. Sci. USA 101, 13683-13688.   DOI
95 Shimaoka, M., Iida, T., Ohara, A., Taenaka, N., Mashimo, T., Honda, T. and Yoshiya, I. (1995). NOC, a nitric-oxidereleasing compound, induces dose dependent apoptosis in macrophages. Biochem. Biophys. Res. Commun. 209, 519-526.   DOI
96 Silvagno, F., Xia, H. and Bredt, D. S. (1996). Neuronal nitric- oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J. Biol. Chem. 271, 11204-11208.   DOI
97 Simeone, A. M., Colella, S., Krahe, R., Johnson, M. M., Mora, E. and Tari, A. M. (2006). N-(4-Hydroxyphenyl)retinamide and nitric oxide pro-drugs exhibit apoptotic and anti-invasive effects against bone metastatic breast cancer cells. Carcinogenesis 27, 568-577.   DOI
98 Stasch, J. P. and Hobbs, A. J. (2009). NO-independent, haemdependent soluble guanylate cyclase stimulators. Handb. Exp. Pharmacol. 277-308.
99 Sogawa, K., Numayama-Tsuruta, K., Ema, M., Abe, M., Abe, H. and Fujii-Kuriyama, Y. (1998). Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. USA. 95, 7368-7373.   DOI
100 Spedding, M., Schini, V., Schoeffter, P. and Miller, R. C. (1986). Calcium channel activation does not increase release of endothelial-derived relaxant factors (EDRF) in rat aorta although tonic release of EDRF may modulate calcium channel activity in smooth muscle. J. Cardiovasc. Pharmacol. 8, 1130-1137.   DOI
101 Steudel, W., Hurford, W. E. and Zapol, W. M. (1999). Inhaled nitric oxide: basic biology and clinical applications. Anesthesiology 91, 1090-1121.   DOI
102 Stuehr, D. J. and Marletta, M. A. (1985). Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. USA. 82, 7738-7742.   DOI
103 Radomski, M. W., Jenkins, D. C., Holmes, L. and Moncada, S. (1991). Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res. 51, 6073-6078.
104 RayChaudhury, A., Frischer, H. and Malik, A. B. (1996). Inhibition of endothelial cell proliferation and bFGF-induced phenotypic modulation by nitric oxide. J. Cell. Biochem. 63, 125-134.   DOI
105 Sase, K. and Michel, T. (1997). Expression and regulation of endothelial nitric oxide synthase. Trends in Cardiovasc. Med. 7, 28-37.   DOI
106 Schulz, R., Kelm, M. and Heusch, G. (2004). Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 61, 402-413.   DOI
107 Scatena, R., Bottoni, P., Martorana, G. E. and Giardina, B. (2005). Nitric oxide donor drugs: an update on pathophysiology and therapeutic potential. Expert Opin. Investig. Drugs 14, 835-846.   DOI
108 Schgoer, W., Theurl, M., Jeschke, J., Beer, A. G., Albrecht, K., Gander, R., Rong, S., Vasiljevic, D., Egger, M., Wolf, A. M., Frauscher, S., Koller, B., Tancevski, I., Patsch, J. R., Schratzberger, P., Piza-Katzer, H., Ritsch, A., Bahlmann, F. H., Fischer-Colbrie, R., Wolf, D. and Kirchmair, R. (2009). Gene therapy with the angiogenic cytokine secretoneurin induces therapeutic angiogenesis by a nitric oxide-dependent mechanism. Circ. Res. 105, 994-1002.   DOI
109 Schmidt, H. H., Lohmann, S. M. and Walter, U. (1993). The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim. Biophys. Acta. 1178, 153-175.   DOI
110 Schwentker, A. and Billiar, T. R. (2002). Inducible nitric oxide synthase: from cloning to therapeutic applications. World J. Surg. 26, 772-778.   DOI
111 Messmer, U. K. and Brune, B. (1996). Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem. J. 319, 299-305.   DOI
112 Miller, M. R. and Megson, I. L. (2007). Recent developments in nitric oxide donor drugs. Br. J. Pharmacol. 151, 305-321.   DOI
113 Moncada, S., Palmer, R. M. and Higgs, E. A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
114 Murad, F. (1986). Cyclic guanosine monophosphate as a mediator of vasodilation. J. Clin. Invest. 78, 1-5.   DOI