Browse > Article
http://dx.doi.org/10.5483/BMBRep.2020.53.9.108

Implications of telomerase reverse transcriptase in tumor metastasis  

Zou, Yongkang (Institute of Cancer Research, Shenzhen Bay Laboratory)
Cong, Yu-sheng (Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University)
Zhou, Junzhi (Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University)
Publication Information
BMB Reports / v.53, no.9, 2020 , pp. 458-465 More about this Journal
Abstract
Metastasis is the main culprit of the great majority of cancerrelated deaths. However, the complicated process of the invasion-metastasis cascade remains the least understood aspect of cancer biology. Telomerase plays a pivotal role in bypassing cellular senescence and sustaining the cancer progression by maintaining telomere homeostasis and genomic integrity. Telomerase reverse transcriptase (TERT) exerts a series of fundamental functions that are independent of its enzymatic cellular activity, including proliferation, inflammation, epithelia-mesenchymal transition (EMT), angiogenesis, DNA repair, and gene expression. Accumulating evidence indicates that TERT may facilitate most steps of the invasion-metastasis cascade. In this review, we summarize important advances that have revealed some of the mechanisms by which TERT facilitates tumor metastasis, providing an update on the non-canonical functions of telomerase beyond telomere maintaining.
Keywords
Cellular senescence; EMT; Metastasis; Telomerase; TERT;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Piskounova E, Agathocleous M, Murphy MM et al (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186-191   DOI
2 Zheng Y, Miyamoto DT, Wittner BS et al (2017) Expression of beta-globin by cancer cells promotes cell survival during blood-borne dissemination. Nat Commun 8, 14344   DOI
3 Le Gal K, Ibrahim MX, Wiel C et al (2015) Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 7, 308re308
4 Ahmed S, Passos JF, Birket MJ et al (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121, 1046-1053   DOI
5 Haendeler J, Drose S, Buchner N et al (2009) Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler Thromb Vasc Biol 29, 929-935   DOI
6 Singhapol C, Pal D, Czapiewski R, Porika M, Nelson G and Saretzki GC (2013) Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLoS One 8, e52989   DOI
7 Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13, 89-102   DOI
8 Zhou J, Mao B, Zhou Q et al (2014) Endoplasmic reticulum stress activates telomerase. Aging Cell 13, 197-200   DOI
9 Yu M, Bardia A, Wittner BS et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580-584   DOI
10 Valastyan S and Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292   DOI
11 Huang Y, Song N, Ding Y et al (2009) Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 69, 7529-7537   DOI
12 Weis S, Cui J, Barnes L and Cheresh D (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167, 223-229   DOI
13 Gupta GP, Perk J, Acharyya S et al (2007) ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci U S A 104, 19506-19511   DOI
14 Qian BZ, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222-225   DOI
15 Pantel K and Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4, 448-456   DOI
16 Aguirre-Ghiso JA, Estrada Y, Liu D and Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63, 1684-1695
17 Yi X, Tesmer VM, Savre-Train I, Shay JW and Wright WE (1999) Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol Cell Biol 19, 3989-3997   DOI
18 Finkel T, Serrano M and Blasco MA (2007) The common biology of cancer and ageing. Nature 448, 767-774   DOI
19 Palm W and de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42, 301-334   DOI
20 Arndt GM and MacKenzie KL (2016) New prospects for targeting telomerase beyond the telomere. Nat Rev Cancer 16, 508-524   DOI
21 Cong Y and Shay JW (2008) Actions of human telomerase beyond telomeres. Cell Res 18, 725-732   DOI
22 Cong YS, Wright WE and Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66, 407-425, table of contents   DOI
23 Lambert AW, Pattabiraman DR and Weinberg RA (2017) Emerging Biological Principles of Metastasis. Cell 168, 670-691   DOI
24 Wan L, Pantel K and Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19, 1450-1464   DOI
25 Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674   DOI
26 Park YJ, Kim EK, Moon S, Hong DP, Bae JY and Kim J (2014) Human telomerase reverse transcriptase is a promising target for cancer inhibition in squamous cell carcinomas. Anticancer Res 34, 6389-6395
27 Ding D, Xi P, Zhou J, Wang M and Cong YS (2013) Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NFkappaB-dependent transcription. FASEB J 27, 4375-4383   DOI
28 Ghosh A, Saginc G, Leow SC et al (2012) Telomerase directly regulates NF-kappaB-dependent transcription. Nat Cell Biol 14, 1270-1281   DOI
29 Taniguchi K and Karin M (2018) NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18, 309-324   DOI
30 Yu-Lee LY, Yu G, Lee YC et al (2018) Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFbetaRIII-p38MAPKpS249/T252RB Pathway. Cancer Res 78, 2911-2924   DOI
31 Aguirre Ghiso JA, Kovalski K and Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147, 89-104   DOI
32 Shibue T and Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106, 10290-10295   DOI
33 Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E and Peeper DS (2004) Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034-1039   DOI
34 Kobayashi A, Okuda H, Xing F et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208, 2641-2655   DOI
35 Gao H, Chakraborty G, Lee-Lim AP et al (2012) The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764-779   DOI
36 Shiozawa Y, Havens AM, Pienta KJ and Taichman RS (2008) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22, 941-950   DOI
37 Chuang MJ, Sun KH, Tang SJ et al (2008) Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci 99, 905-913   DOI
38 Zhang XH, Wang Q, Gerald W et al (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67-78   DOI
39 Okamoto N, Yasukawa M, Nguyen C et al (2011) Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci U S A 108, 20388-20393   DOI
40 Sullivan NJ, Sasser AK, Axel AE et al (2009) Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940-2947   DOI
41 Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S and Nakshatri H (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26, 711-724   DOI
42 Pastushenko I and Blanpain C (2019) EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol 29, 212-226   DOI
43 Thiery JP, Acloque H, Huang RY and Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890   DOI
44 Tam WL and Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19, 1438-1449   DOI
45 Liu Z, Li Q, Li K et al (2013) Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene 32, 4203-4213   DOI
46 Vlodavsky I, Ilan N, Naggi A and Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparinderived mimetics of heparan sulfate. Curr Pharm Des 13, 2057-2073   DOI
47 Park YJ, Kim EK, Bae JY, Moon S and Kim J (2016) Human telomerase reverse transcriptase (hTERT) promotes cancer invasion by modulating cathepsin D via early growth response (EGR)-1. Cancer Lett 370, 222-231   DOI
48 Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339, 959-961   DOI
49 Cassar L, Li H, Pinto AR, Nicholls C, Bayne S and Liu JP (2008) Bone morphogenetic protein-7 inhibits telomerase activity, telomere maintenance, and cervical tumor growth. Cancer Res 68, 9157-9166   DOI
50 Li H, Xu D, Li J, Berndt MC and Liu JP (2006) Transforming growth factor beta suppresses human telomerase reverse transcriptase (hTERT) by Smad3 interactions with c-Myc and the hTERT gene. J Biol Chem 281, 25588-25600   DOI
51 Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L and Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957-959   DOI
52 Vinagre J, Almeida A, Populo H et al (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4, 2185   DOI
53 Bell RJ, Rube HT, Kreig A et al (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348, 1036-1039   DOI
54 Griewank KG, Murali R, Puig-Butille JA et al (2014) TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J Natl Cancer Inst 106, 1-13   DOI
55 Turk V, Stoka V, Vasiljeva O et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824, 68-88   DOI
56 Landa I, Ganly I, Chan TA et al (2013) Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab 98, E1562-1566   DOI
57 Liu X, Qu S, Liu R et al (2014) TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 99, E1130-1136   DOI
58 Liu R and Xing M (2014) Diagnostic and prognostic TERT promoter mutations in thyroid fine-needle aspiration biopsy. Endocr Relat Cancer 21, 825-830   DOI
59 Tang B, Xie R, Qin Y et al (2016) Human telomerase reverse transcriptase (hTERT) promotes gastric cancer invasion through cooperating with c-Myc to upregulate heparanase expression. Oncotarget 7, 11364-11379   DOI
60 Gocheva V, Zeng W, Ke D et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20, 543-556   DOI
61 Hu C, Ni Z, Li BS et al (2017) hTERT promotes the invasion of gastric cancer cells by enhancing FOXO3a ubiquitination and subsequent ITGB1 upregulation. Gut 66, 31-42   DOI
62 He B, Xiao YF, Tang B et al (2016) hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a. Sci Rep 6, 21955   DOI
63 Chen MB, Lamar JM, Li R, Hynes RO and Kamm RD (2016) Elucidation of the Roles of Tumor Integrin beta1 in the Extravasation Stage of the Metastasis Cascade. Cancer Res 76, 2513-2524   DOI
64 Xu Z, Zou L, Ma G et al (2017) Integrin beta1 is a critical effector in promoting metastasis and chemo-resistance of esophageal squamous cell carcinoma. Am J Cancer Res 7, 531-542
65 Chen S, Yang L, Dong H and Guo H (2019) Human telomerase reverse transcriptase recruits the beta-catenin/TCF-4 complex to transactivate chemokine (C-C motif) ligand 2 expression in colorectal cancer. Biomed Pharmacother 112, 108700   DOI
66 Kitamura T, Qian BZ and Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15, 73-86   DOI
67 Wang K, Liu T, Ge N et al (2014) TERT promoter mutations are associated with distant metastases in upper tract urothelial carcinomas and serve as urinary biomarkers detected by a sensitive castPCR. Oncotarget 5, 12428-12439   DOI
68 Melo M, da Rocha AG, Vinagre J et al (2014) TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 99, E754-765   DOI
69 George JR, Henderson YC, Williams MD et al (2015) Association of TERT Promoter Mutation, But Not BRAF Mutation, With Increased Mortality in PTC. J Clin Endocrinol Metab 100, E1550-1559   DOI
70 Pestana A, Vinagre J, Sobrinho-Simoes M and Soares P (2017) TERT biology and function in cancer: beyond immortalisation. J Mol Endocrinol 58, R129-R146   DOI
71 Liu W, Yin Y, Wang J et al (2017) Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC. Oncotarget 8, 179-190   DOI
72 Liu R, Zhang T, Zhu G and Xing M (2018) Regulation of mutant TERT by BRAF V600E/MAP kinase pathway through FOS/GABP in human cancer. Nat Commun 9, 579   DOI
73 Dirat B, Bochet L, Dabek M et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71, 2455-2465   DOI
74 Peinado H, Zhang H, Matei IR et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17, 302-317   DOI
75 Low KC and Tergaonkar V (2013) Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 38, 426-434   DOI
76 Yuan X, Larsson C and Xu D (2019) Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene 38, 6172-6183   DOI
77 Zhou J, Ding D, Wang M and Cong YS (2014) Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep 47, 8-14   DOI
78 Jafri MA, Ansari SA, Alqahtani MH and Shay JW (2016) Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 8, 69   DOI
79 Marian CO, Cho SK, McEllin BM et al (2010) The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumor-initiating cells leading to decreased proliferation and tumor growth. Clin Cancer Res 16, 154-163   DOI
80 Zanetti M (2017) A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol 14, 115-128   DOI
81 Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557-563   DOI
82 Wyckoff J, Wang W, Lin EY et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64, 7022-7029   DOI
83 Obenauf AC and Massague J (2015) Surviving at a Distance: Organ-Specific Metastasis. Trends Cancer 1, 76-91   DOI
84 Zhou L, Zheng D, Wang M and Cong YS (2009) Telomerase reverse transcriptase activates the expression of vascular endothelial growth factor independent of telomerase activity. Biochem Biophys Res Commun 386, 739-743   DOI
85 Liu N, Ding D, Hao W et al (2016) hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res 44, 8693-8703   DOI
86 Bermudez Y, Yang H, Saunders BO, Cheng JQ, Nicosia SV and Kruk PA (2007) VEGF- and LPA-induced telomerase in human ovarian cancer cells is Sp1-dependent. Gynecol Oncol 106, 526-537   DOI
87 Ding Z, Wu CJ, Jaskelioff M et al (2012) Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148, 896-907   DOI
88 Zaccagnini G, Gaetano C, Della Pietra L et al (2005) Telomerase mediates vascular endothelial growth factordependent responsiveness in a rat model of hind limb ischemia. J Biol Chem 280, 14790-14798   DOI
89 Giampieri S, Manning C, Hooper S, Jones L, Hill CS and Sahai E (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11, 1287-1296   DOI
90 Padua D, Zhang XH, Wang Q et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66-77   DOI
91 Massague J and Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529, 298-306   DOI
92 Senft D and Ronai ZA (2016) Adaptive Stress Responses During Tumor Metastasis and Dormancy. Trends Cancer 2, 429-442   DOI
93 Chambers AF, Groom AC and MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2, 563-572   DOI
94 Senft D and Ronai ZE (2016) Adaptive Stress Responses During Tumor Metastasis and Dormancy. Trends Cancer 2, 429-442   DOI
95 Gorrini C, Harris IS and Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12, 931-947   DOI