Browse > Article
http://dx.doi.org/10.14456/apjcp.2016.51/APJCP.2016.17.7.3043

Pleiotropic Roles of Metalloproteinases in Hematological Malignancies: an Update  

Chaudhary, Ajay K (Department of Immunohematology, National Institute of Immunohematology, KEM Hospital Campus)
Chaudhary, Shruti (Hematopathology Laboratory, Tata Memorial Hospital)
Ghosh, Kanjaksha (Department of Immunohematology, National Institute of Immunohematology, KEM Hospital Campus)
Nadkarni, A (Department of Immunohematology, National Institute of Immunohematology, KEM Hospital Campus)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.17, no.7, 2016 , pp. 3043-3051 More about this Journal
Abstract
Controlled remodeling of the extracellular matrix (ECM) is essential for cell growth, invasion and metastasis. Matrix metalloproteinases (MMPs) are a family of secreted, zinc-dependent endopeptidases capable of degradation of ECM components. The expression and activity of MMPs in a variety of human cancers have been intensively studied. They play important roles at different steps of malignant tumor formation and have central significance in embryogenesis, tissue remodeling, inflammation, angiogenesis and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis. Recent studies also suggest that MMPs play complex roles in tumor progression. MMPs and membrane type (MT)-MMPs are potentially significant therapeutic targets in many cancers, so that designing of specific MMP inhibitors would be helpful for clinical trials. Here, we review the pleiotropic roles of the MMP system in hematological malignancies in-vitro and in-vivo models.
Keywords
Matrix metalloproteinases; tumorigenesis; MMP inhibitors; leukemias;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Egeblad M, Werb Z (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2, 161-74.   DOI
2 Eguchi T, Kubota S, Kawata K, et al (2008). Novel transcriptionfactor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Molecular Cellular Biol, 28, 2391-413.   DOI
3 Vundinti BR, Kerketta L, Jijina F, et al (2009). Cytogenetic study of myelodysplastic syndrome from India. Indian J Med Res, 130, 155-9.
4 Pan YX, Yang L, Wen SP, et al (2014). Expression and clinical significance of MMP-2 and MMP-9 in B acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 22, 640-3.
5 Wang C, Chen Z, Li Z, et al (2010). The essential roles of matrix metalloproteinase-2, membrane type 1 metalloproteinase and tissue inhibitor of metalloproteinase-2 in the invasive capacity of acute monocytic leukemia SHI-1 cells. Leuk Res, 34, 1083-90.   DOI
6 Xu X, Ma J, Li C et al (2015). Regulation of chondrosarcoma invasion by MMP26. Tumour Biol, 36, 365-9.   DOI
7 Owen JL, Iragavarapu-Charyulu V, Gunja-Smith Z, et al (2003). Up-regulation of matrix metalloproteinase-9 in T lymphocytes of mammary tumor bearers: role of vascular endothelial growth factor. J Immunol, 171, 4340-51.   DOI
8 Parvathy SS, Masocha W (2013). Matrix metalloproteinase inhibitor COL-3 prevents the development of paclitaxelinduced hyperalgesia in mice. Med Princ Pract, 22, 35-41.   DOI
9 Pegahi R, Poyer F, Legrand E, et al (2005). Spontaneous and cytokine-evoked production of matrix metalloproteinases by bone marrow and peripheral blood pre-B cells in childhood acute lymphoblastic leukaemia. Eur Cytokine Netw, 16, 223-32.
10 Poyer F, Coquerel B, Pegahi R, et al (2009). Secretion of MMP-2 and MMP-9 induced by VEGF autocrine loop correlates with clinical features in childhood acute lymphoblastic leukemia. Leuk Res, 33, 407-17.   DOI
11 Ravera S, Capanni C, Tognotti D, et al (2015). Inhibition of metalloproteinase activity in FANCA is linked to altered oxygen metabolism. J Cell Physiol, 230, 603-9.   DOI
12 Riether C, Schurch CM, Ochsenbein AF (2015). Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ, 22, 187-98.   DOI
13 Redondo-Munoz J, Ugarte-Berzal E, Garcia-Marco JA, et al (2008). Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood, 112, 169-78.   DOI
14 Redondo-Munoz J, Ugarte-Berzal E, Terol MJ, et al (2010). Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. Cancer Cell, 17, 160-72.   DOI
15 Ries C, Loher F, Zang C, et al (1999). Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clin Cancer Res, 5, 1115-24.
16 Roomi MW, Bhanap B, Roomi NW, et al (2014). In vitro inhibition of matrix metalloproteinases, invasion and growth of Fanconi anemia human FANCA and FANCC lymphoblasts by nutrient mixture. Exp Oncol, 36, 212-4.
17 Roomi MW, Roomi NW, Bhanap B, et al (2013). Repression of matrix metalloproteinases and inhibition of cell invasion by a nutrient mixture, containing ascorbic acid, lysine, proline, and green tea extract on human Fanconi anemia fibroblast cell lines. Exp Oncol, 35, 20-4.
18 Roy R, Zurakowski D, Wischhusen J, et al (2014). Urinary TIMP-1 and MMP-2 levels detect the presence of pancreatic malignancies. Br J Cancer, 111, 1772-9.   DOI
19 Klein G, Schmal O, Aicher WK (2015). Matrix metalloproteinases in stem cell mobilization. Matrix Biol, 44-46, 175-83.   DOI
20 Rudek MA, New P, Mikkelsen T, et al (2011). Phase I and pharmacokinetic study of COL-3 in patients with recurrent high-grade gliomas. J Neurooncol, 105, 375-81.   DOI
21 Bernal T, Moncada-Pazos A, Soria-Valles C et al (2013). Effects of azacitidine on matrix metalloproteinase-9 in acute myeloid leukemia and myelodysplasia. Exp Hematol, 41, 172-9.   DOI
22 Alcantara MB, Dass CR (2014). Pigment epithelium-derived factor as a natural matrix metalloproteinase inhibitor: a comparison with classical matrix metalloproteinase inhibitors used for cancer treatment. J Pharm Pharmacol, 66, 895-902.   DOI
23 Bagby GC, Alter BP (2006). Fanconi anemia. Semin Hematol, 43, 147-56.   DOI
24 Barille S, Akhoundi C, Collette M, et al (1997). Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood, 90, 1649-55.
25 Luo D, Mari B, Stoll I, et al (2002). Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J Biol Chem, 277, 25527-36.   DOI
26 Lin LI, Lin DT, Chang CJ et al (2002). Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia. Br J Haematol, 117, 835-41.   DOI
27 List AF, Vardiman J, Issa JP, et al (2004). Myelodysplastic syndromes. Hematol Am Soc Hematol Educ Program, 2004, 297-317.
28 Lu XS, Sun W, Ge CY, et al (2013). Contribution of the PI3K/MMPs/$Ln-5{\gamma}2$ and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. Int J Oncol, 42, 2103-15.   DOI
29 Ma J, Wang J, Fan W, et al (2013). Upregulated TIMP-1 correlates with poor prognosis of laryngeal squamous cell carcinoma. Int J Clin Exp Pathol, 15, 246-54.
30 Maquoi E, Sounni NE, Devy L, et al (2004). Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-2, 4, 6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin Cancer Res, 10, 4038-47.   DOI
31 Martignetti JA, Aqeel AA, Sewairi WA et al (2001). Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet, 28, 261-5.   DOI
32 Yana, I. and Seiki, M. (2002). MT-MMPs play pivotal roles in cancer dissemination. Clin Exp Metastasis, 19, 209-15.   DOI
33 Brown GD, Nazarali AJ (2010). Matrix metalloproteinase-25 has a functional role in mouse secondary palate development and is a downstream target of $TGF-{\beta}3$. BMC Dev Biol, 10, 93.   DOI
34 Campo E, Swerdlow SH, Harris NL et al (2011). The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood, 117, 5019-32.   DOI
35 Yamaguchi N, Ito Y, Ohyashiki K (2005). Increased intracellular activity of matrix metalloproteinases in neutrophils may be associated with delayed healing of infection without neutropenia in myelodysplastic syndromes. Ann Hematol, 84, 383-8.   DOI
36 Yeow KM, Kishnani NS, Hutton M, (2002). Sorsby's fundus dystrophy tissue inhibitors of metalloproteinases-3 (TIMP-3) mutants have unimpaired matrix metalloproteinase inhibitory activities, but affect cell adhesion to the extracellular matrix. Matrix Biol, 21, 75-88.   DOI
37 Matias-Roman S, Galvez BG, Genis L, et al (2005). Membrane type 1-matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium. Blood, 105, 3956-64.   DOI
38 Kuittinen O, Savolainen ER, Koistinen P, et al (2001). MMP-2 and MMP-9 expression in adult and childhood acute lymphatic leukemia (ALL). Leuk Res, 25, 125-31.   DOI
39 Yang MX, Qu X, Kong BH, et al (2006). Membrane type 1-matrix metalloproteinase is involved in the migration of human monocyte-derived dendritic cells. Immunol Cell Biol, 84, 557-62.   DOI
40 Yang Z, Fan Y, Deng Z, et al (2012). Amyloid precursor protein as a potential marker of malignancy and prognosis in papillary thyroid carcinoma. Oncol Lett, 3, 1227-30.   DOI
41 Okumura AJ, Peterson LF, Okumura F, et al (2008). t(8;21) (q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood, 112, 1392-401.   DOI
42 Mejia-Cristobal LM, Reus E, Lizarraga F, Espinosa M, et al (2015). Tissue inhibitor of metalloproteases-4 (TIMP-4) modulates adipocyte differentiation in vitro. Exp Cell Res, 335, 207-15.   DOI
43 Moon JW, Choi JH, Lee SK, et al (2015). Promoter hypermethylation of membrane type 3 matrix metalloproteinase is associated with cell migration in colorectal adenocarcinoma. Cancer Genet, 208, 261-70.   DOI
44 Nagase H, Visse R, Murphy G (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 69, 562-73.   DOI
45 Olczyk P, Mencner L, Komosinska-Vassev K (2014). The role of the extracellular matrix components in cutaneous wound healing. Biomed Res Int, 2014, 747584.
46 Forsyth PA, Wong H, Laing TD, et al (1999). Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. British J Cancer, 79, 1828-35.   DOI
47 Shyamsunder P, Verma RS, Lyakhovich A (2015). ROMO1 regulates RedOx states and serves as an inducer of $NF-{\kappa}B$-driven EMT factors in Fanconi anemia. Cancer Lett, 361, 33-8.   DOI
48 Yu XF, Han ZC (2006). Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histol Histopathol, 21, 519-31.
49 Zhang G, Miyake M, Lawton A, et al (2014). Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer, 14, 310.   DOI
50 Scrideli CA, Cortez MA, Yunes JA, et al (2010). mRNA expression of matrix metalloproteinases (MMPs) 2 and 9 and tissue inhibitor of matrix metalloproteinases (TIMPs) 1 and 2 in childhood acute lymphoblastic leukemia: potential role of TIMP1 as an adverse prognostic factor. Leuk Res, 34, 32-7.   DOI
51 Sithu SD, English WR, Olson P, et al (2007). Membrane-type 1-Matrix Metalloproteinase Regulates Intracellular Adhesion Molecule-1 (ICAM-1)-mediated Monocyte Transmigration. J Biol Chem, 282, 25010-9.   DOI
52 Harrison CJ, Haas O, Harbott J, et al (2010). Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the biology and diagnosis committee of the international berlin-frankfurt-munster study group. Br J Haem, 151, 132-42.   DOI
53 Gallipoli P, Giotopoulos G, Huntly BJ (2015). Epigenetic regulators as promising therapeutic targets in acute myeloid leukemia. Ther Adv Hematol, 6, 103-19   DOI
54 Gao H, Peng C, Liang B, et al (2014). ${\beta}6$ Integrin induces the expression of metalloproteinase-3 and metalloproteinase-9 in colon cancer cells via ERK-ETS1 pathway. Cancer Lett, 354, 427-37   DOI
55 Graux C, Cools J, Michaux et al (2002). Cytogenetics and molecular genetics of Tcell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia, 20, 1496-510.
56 Greenberg PL, Young NS, Gattermann N (2002). Myelodysplastic syndromes. Hematol Am Soc Hematol Educ Program, 2002, 136-61.
57 Hanahan D, Folkman J (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353-64.   DOI
58 He QT, Bai XQ, Liu XW, et al (2014). 13. Protein and mRNA expression of CTGF, CYR61, VEGF-C and VEGFR-2 in bone marrow of leukemia patients and its correlation with clinical features. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 22, 653-9.
59 Hoek KS, Schlegel NC, Eichhoff OM, et al (2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell Melanoma Res, 21, 665-76.   DOI
60 Stricker TP, Dumin JA, Dickeson SK, et al (2001). Structural analysis of the alpha(2) integrin I domain/procollagenase-1 (matrix metalloproteinase-1) interaction. J Biol Chem, 276, 29375-81.   DOI
61 Suminoe A, Matsuzaki A, Hattori H, et al (2007). Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement. Leuk Res, 31, 1437-40.   DOI
62 Janowska-Wieczorek A, Majka M, et al (2002). Bcr-ablpositive cells secrete angiogenic factors including matrix metalloproteinases and stimulate angiogenesis in vivo in Matrigel implants. Leukemia, 16, 1160-6.   DOI
63 Hua H, Li M, Luo T, et al (2011). Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci, 68, 3853-68.   DOI
64 Hwang TL, Changchien TT, Wang CC, et al (2014). Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and -9 expression. Oncol Lett, 8, 1367-71.   DOI
65 Iwata M, Pillai M, Ramakrishnan A et al (2007). Reduced expression of inducible gelatinase B/matrix metalloproteinase-9 in monocytes from patients with myelodysplastic syndrome: Correlation of inducible levels with the percentage of cytogenetically marked cells and with marrow cellularity. Blood, 109, 85-92.   DOI
66 Travaglino E, Benatti C, Malcovati L, et al (2008). Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. Eur J Haematol, 80, 216-26.   DOI
67 Sun X, Li Y, Yu W, et al (2008). MT1-MMP as a downstream target of BCR-ABL/ABL interactor 1 signaling: polarized distribution and involvement in BCR-ABL-stimulated leukemic cell migration. Leukemia, 22, 1053-6.   DOI
68 Tarhini AA, Lin Y, Yeku O, et al (2014). A four-marker signature of TNF-RII, $TGF-{\alpha}$, TIMP-1 and CRP is prognostic of worse survival in high-risk surgically resected melanoma. J Transl Med, 12, 19.   DOI
69 Tong H, Hu C, Yin X, et al (2013). A Meta-Analysis of the Relationship between Cigarette Smoking and Incidence of Myelodysplastic Syndromes. PLoS One, 8, 67537.   DOI
70 Ugarte-Berzal E, Bailon E, Amigo-Jimenez I, et al (2012). A 17-residue sequence from the matrix metalloproteinase-9 (MMP-9) hemopexin domain binds ${\alpha}4{\beta}1$ integrin and inhibits MMP-9-induced functions in chronic lymphocytic leukemia B cells. J Biol Chem, 287, 27601-13.   DOI
71 Song H, Fares M, Maguire KR, et al (2014). Cytotoxic effects of tetracycline analogues (doxycycline, minocycline and COL-3) in acute myeloid leukemia HL-60 cells. PLoS One, 9, 114457.   DOI
72 Chaudhary AK, Singh M, Bharti AC, et al (2010). Synergistic effect of stromelysin-1 (matrix metalloproteinase-3) promoter (-1171 5A->6A) polymorphism in oral submucous fibrosis and head and neck lesions. BMC Cancer, 10, 369.   DOI
73 Jiang L, Yu G, Meng W et al (2013). Overexpression of amyloid precursor protein in acute myeloid leukemia enhances extramedullary infiltration by MMP-2. Tumour Biol, 34, 629-36.   DOI
74 Johansson N, Ahonen M, Kahari VM. (2000). Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci. 57, 5-15.   DOI
75 Chaudhary AK, Singh M, Bharti AC, et al (2010). Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. Biomed Sci, 17, 10.   DOI
76 Chaudhary AK, Pandya S, Ghosh K et al (2013). Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: an overview. Mutat Res, 753, 7-23.   DOI
77 Epanchintsev A, Shyamsunder P, Verma RS, et al (2015). IL-6, IL-8, MMP-2, MMP-9 are overexpressed in Fanconi anemia cells through a $NF-{\kappa}B$/TNF-${\alpha}$ dependent mechanism. Mol Carcinog, 54, 1686-99.   DOI
78 Fanjul-Fernandez M, Folgueras AR, Cabrera S, et al (2010). Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta, 1803, 3-19.   DOI
79 Farina AR, Cappabianca L, DeSantis G, et al (2011). Thioredoxin stimulates MMP-9 expression, de-regulates the MMP-9/TIMP-1 equilibrium and promotes MMP-9 dependent invasion in human MDA-MB-231 breast cancer cells. FEBS Lett, 585, 3328-36.   DOI
80 Chaudhary AK, Pandya S, Mehrotra R et al (2011). Role of functional polymorphism of matrix metalloproteinase-2 (-1306 C/T and -168 G/T) and MMP-9 (-1562 C/T) promoter in oral submucous fibrosis and head and neck squamous cell carcinoma in an Indian. Biomarkers, 16, 577-86.   DOI
81 Deschler B, Lubbert M (2006). Acute myeloid leukemia: epidemiology and etiology. Cancer, 107, 2099-107.   DOI
82 Cianfrocca M, Cooley TP, Lee JY, et al (2002). Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi's sarcoma: a phase I AIDS malignancy consortium study. J Clin Oncol, 20, 153-9.
83 DeClerck YA, Perez N, Shimada H, et al (1992). Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res, 52, 701-8.
84 Deryugina EI, Quigley JP (2010). Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta, 1803, 103-20.   DOI
85 Dezube BJ, Krown SE, Lee JY, et al (2006). Randomized phase II trial of matrix metalloproteinase inhibitor COL-3 in AIDSrelated Kaposi's sarcoma: an AIDS malignancy consortium study. J Clin Oncol, 24, 1389-94.   DOI
86 Edman K, Furber M, Hemsley P, et al (2011). “The discovery of MMP7 inhibitors exploiting a novel selectivity trigger”. Chem Med Chem, 6, 769-73.   DOI