Kim, S.H.;Kim, S.Y.;Jeon, C.H.;Joo, B.D.;Moon, Y.H.
Transactions of Materials Processing
/
v.21
no.1
/
pp.42-48
/
2012
Hydroforming has attracted the attention of manufacturing industries for vehicles and transportation systems. A wide range of products such as subframes, camshafts, radiator frames, axles and crankshafts are made by the hydroforming process. Hydroformed parts often need to be structurally joined to other components during assembly. Therefore it is useful if the hydroformed automotive parts can be attached with a localized flange. In this study, a hydroforming process to produce a rectangular shape flange is proposed. FE analysis to form the flanged rectangular shape was performed by Dynaform 5.5. The hydroforming characteristics at various die aspect ratios and feeding conditions were analyzed and optimal process conditions which can avoid defects are suggested. For validation purposes, hydroforming experiments to form the flange were conducted with the optimized conditions. The results show that the flanged parts can be successfully formed with a hydroforming process without additional processing steps.
Hydroforming has attracted a great deal of attention in the manufacturing industries for vehicles and transportation systems. Hydroforming technology contributes to weight reduction, increased strength, improved quality and reduced tooling cost. Hydroformed automotive parts used as structure components in vehichle body frame often have to be structurally joined at some point. Therefore it is useful if the hydroformed automotive parts can be given a localized attachment flange. For a given flange shape, a parting plane for the dies is established relative to which the various surfaces of the flange shape, in cross section, have no significant reverse curvature. In this study, hydroforming process for flange forming was proposed. FE analysis to form flanged circular shape and flanged rectangular shape was preformed with Dynaform 5.5. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as tool geometry and hydraulic pressure has been performed and optimized. The results show that flanged automotive parts can be successfully produced with tube hydroforming.
Hydroforming is the technology that utilizes hydraulic pressure to form tube or sheet materials into desired shapes inside die cavities. Tube hydroforming provides a number of advantages over the conventional stamping process, including fewer secondary operations, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength. In many case, hydroformed parts have to be structurally joined at some point. Therefore it is useful if the hydroformed automotive parts can be given a localized attachment flange. In this study for the numerical process design FE analysis was performed with DYNAFORM 5.5. Die parting angle and circumferential expansion ratio was optimized. With optimized condition, bulge and hydroforming experiments to form flange were performed. Forming characteristic at various pressure conditions was analyzed and optimized internal pressure condition was evaluated. The results show that flanged parts can be successfully produced by tube hydroforming process.
Compared with the hydroforming technology for steel, the hydroforming technology for aluminum has not been actively investigated. Recently, the hydroforming of high strength aluminum tubes has attracted great interest because of its good strength to weight ratio. In this study, front side member (FSM) is fabricated with the hydroforming of aluminum tube and the mechanical properties and dimensional accuracy of the hydroformed FSM is investigated. For hydroforming process, extruded aluminum tubes with ribs to improve the structural rigidity are used. To ensure the mechanical properties, the aluminum tubes are T6 heat-treated before hydroforming.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2009.10a
/
pp.177-180
/
2009
Tube hydroforming provides a number of advantages over the conventional stamping process, including fewer secondary operations, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength and stiffness. A hydroformed vehicle body component has an attachment flange or the like-formed as an integral part of the hydroforming process. For a given flange shape, a parting plane for the dies is established relative to which the various surfaces of the flange shape, in cross section, have no significant reverse curvature. This study shows analysis results that form the flanged tubular parts in the hydroforming. The thickness variations and defects during the hydroforming for flange forming could be analyzed by FE analysis. FE analysis was performed by LS-DYNA/Dynaform 5.5.
The tube hydroforming process has received much attention in the automotive industry because of its advantages compared to conventional manufacturing technologies. A wide range of products such as sub-frames, camshafts, radiator frames, axles and crankshafts are made by hydroforming process. The hydroformed parts often need to be structurally joined to other components during assembly. Therefore, these automotive parts need to be manufactured with a localized attachment flange. In this study, FE forming analyses of a part with a rectangular flanged shape was performed with Dynaform 5.5. Using the optimized conditions determined numerically, hydroforming experiments were performed. Then, the characterization of defects was analyzed. Finally, the accuracy of the optimized internal pressure condition as well as that of the initial ram position were evaluated. The results demonstrated that flanged parts can be successfully produced using the tube hydroforming process.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2003.05a
/
pp.402-408
/
2003
Currently tube hydroforming has many studies and applications in manufacturing industry, especially in automotive industry. But tube hydroforming was applied to the automotive component with simple shape. So the manufacturer and the researcher proposed additional processes to form the automotive component with complex shape. It is prebending and preforming. Prebending is to crush bend or rotary draw bend a tubular blank into a shape that facilitates placement into the next forming tool. Preforming is where the prebent tube is crushed into a shape that facilitates placement into the final forming tool. This paper analyzed and compared to the tube hydroforming process to using of general and preformed bending tube, also explained the importance of tube bending and preforming process. The explicit finite element program PAM-STAMP$\^$TM/ was used to simulate the tube hydroforming operations.
Kim, Jeong;Lei, Liping;Kang, Sung-Jong;Kang, Beom-Soo
Transactions of the Korean Society of Automotive Engineers
/
v.9
no.6
/
pp.160-169
/
2001
To predict busting failure in tubular hydroforming, the criteria for ductile fracture proposed by Oyane is combined with the finite element method. From the histories of stress and strain in each element obtained from finite element analysis, the fracture initiation site is predicted by mean of the criterion. The prediction by the ductile fracture criterion is applied to three hydroforming processes such as a tee extrusion, an automobile rear axle housing and lower am. For these products, the ductile fracture integral I is not only affected by the process parameters, but also by preforming processes. All the simulation results show the combination of the finite element analysis and the ductile fracture criteria is useful in the prediction of farming limit in hydroforming processes.
Generally, the forming process of suspension system parts have been considered only considered with the formability and have not been considered with the durability of suspension system. But the durability of suspension system is very important characteristic for the dynamic performance of vehicle. Therefore, the suspension system should be manufactured to consider the durability as well as the formability. This paper is about an optimum forming process design with the effect of section properties to consider the roll durability of torsion beam type suspension. In order to determine the tube hydroforming process for the satisfaction the roll durability, the stamping and hydroforming simulation by finite element method were performed. And the results from finite element analysis and roll durability examination showed the tube hydroforming process of torsion beam is optimized as satisfying the durability performance.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2005.10a
/
pp.71-74
/
2005
In manufacturing automotive parts, such as engine cradles, frame rails, subframes, cross-members, and other parts from circular tubes, pre-bending and pre-forming operations are often required prior to the subsequent tubular hydroforming process. During some pre-forming operations, the cross section of a bent circular tube is crushed into an oval-like shape to ensure proper geometry and sufficient clearance in the hydroforming dies. For such applications, the use of oval Instead of circular tubes could be an effective means of eliminating the pre-forming step. The oval tube could also be produced with less thinning and with less strain on the outside of the bend when controlled by a booster system without the use of mandrel. Hence, the understanding of the issues that occur in the bending of oval tubes is worthy of Investigation. This paper presents parametric studies on the bending of oval tubes without a mandrel. The finite element modeling technique is used to examine the deformation characteristics for both circular and oval tubes. In the simulations, the bending process parameters of bend radius, aspect ratio of the tube ovalness, and tube wall thickness are varied. Observations are made to obtain a hoop-buckle limit diagram in terms of a non-dimensional shape degradation factor. Suggestions based upon developed criteria are made on the acceptability of bend tubes suitable for hydroforming applications without the need ofa pre-forming step or the used of a mandrel.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.