• Title/Summary/Keyword: Tube-sheet

Search Result 159, Processing Time 0.027 seconds

Forming Limit Diagram of an Aluminum Tube Through Hydroforming Tests (액압성형 시험을 통한 알루미늄 튜브 재료의 성형한계도)

  • Kim J. S.;Lee J. K.;Park J. Y.;Lee D. J.;Kim H. Y.;Kim H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.514-519
    • /
    • 2005
  • A tube hydroformability testing system was designed and fabricated enabling to apply the forming condition along arbitrarily pre-programmed internal pressure-axial feed path. The free-bulging and T-forming tests were carried out on the extruded aluminum (A6063) tube specimens with 40.6 mm outer diameter and 2.25 mm thickness. Nine different combinations of internal pressure and axial feed, yielding different strain paths from one another, were taken into consideration in order to induce bursting at various deformation modes. Major and minor strains were automatically measured from deformed grids around the fracture using a stereo-vision-based surface strain measurement system, named ASIAS. The forming limit diagram of the A6063 tube material was successfully obtained. Most of the data points acquired from free bulging and T-forming tests appeared in the range of negative minor strain on the FLD and are mostly located near the strain paths calculated from explicit finite element simulations. The forming limit obtained from tests after pre-tension was considerably lower than that from tests without pre-tension, which showed the strain path-dependency of the forming limit as well known in the sheet forming fold.

Study on preparation of a thin film type of ZnS(Ag) scintillator sheet for alpha-ray detection (얇은 필름 형태의 알파선 측정용 ZnS(Ag) 섬광 검출소재 제조 연구)

  • Seo, Bum-Kyoung;Jung, Yeon-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Jung, Chong-Hun;Han, Myeong-Jin
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.389-393
    • /
    • 2006
  • The detector consisted of ZnS(Ag) scintillator and photomultiplier tube (PMT) is widely used as contamination monitor in the nuclear facilities. Such detectors are mainly manufactured by adhering the ZnS(Ag) powder onto the transparent plastic. In this study the preparation condition for ZnS(Ag) scintillator sheet using a simple method was established. The scintillator sheet was composed with a support polymer sheet and ZnS(Ag) scintillator layer. The base sheet was prepared by casting the polymer solution after solving the polymer with solvent and the scintillator layer was manufactured by printing the mixture solution with ZnS(Ag) and paste. It was found that the polysulfone(PSf) as a polymer for the base sheet and a cyano resin as a paste for adhering the ZnS(Ag) scintillator was suitable. Also, the prepared thin scintillator sheet had a sufficient mechanical strength, a optical transparency and an alpha-ray detection performance.

Prediction of Welding Pressure in the Non Steady state Porthole Die Extrusion of AI7003 Tubes (포트홀 다이 압출방식에 의한 AI7003 튜브의 접합강도예측)

  • Jo, Hyung-Ho;Lee, Sang-Gon;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.179-185
    • /
    • 2001
  • Porthole die extrusion is profitable to manufacture long tube with hollow section. The material through portholes is gathered within chamber and welded under high pressure. This weldability which classifies the quality of tube product is affected by several variables and die shape. But, porthole die extrusion has been executed on the experience of experts due to the complicated die assembly and complexity of metal flow. Analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded. Therefore, the objective of this study is respectively to analyze the behavior of metal flow and to determine welding pressure of hot extrusion product according to the various billet temperature, bearing length and tube thickness by FE analysis and its results are compared with tube expanding tests.

  • PDF

Study on Application of Forming Limit Criteria for Formability on Hydroforming Parts (하이드로포밍 부품의 성형성 평가기준 적용 연구)

  • Heo, Seong-Chan;Song, Woo-Jin;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.833-838
    • /
    • 2007
  • In tube hydroforming process, several defective products could be obtained such as bursting, wrinkling, folding, buckling. Because, especially, bursting is most frequently occurred failure among the well known failures, it is mostly important to predict the onset of bursting failure on tube hydroforming process. For most sheet metal forming processes, strain based forming limit diagram(FLD) is used often as a criteria to estimate the possibility of onset of the failures proposed above. However, FLD has a shortcoming that it is dependent on strain path while stress based diagram is independent on strain history. Generally, tube hydroforming consists of three main processes such as pre-bending, pre-forming, and hydroforming and it means that the strain histories of final products are nonlinear. Therefore, forming limit stress diagram(FLSD) is more suitable to predict forming limit for hydroforming parts. In this study, FLSD is applied to estimate bursting failure for an engine cradle of an automobile part. Consequently, it is proved that application of FLSD to predict forming limit is available for tube hydroforming parts.

Motion planning of a steam generator mobile tube-inspection robot

  • Xu, Biying;Li, Ge;Zhang, Kuan;Cai, Hegao;Zhao, Jie;Fan, Jizhuang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1374-1381
    • /
    • 2022
  • Under the influence of nuclear radiation, the reliability of steam generators (SGs) is an important factor in the efficiency and safety of nuclear power plant (NPP) reactors. Motion planning that remotely manipulates an SG mobile tube-inspection robot to inspect SG heat transfer tubes is the mainstream trend of NPP robot development. To achieve motion planning, conditional traversal is usually used for base position optimization, and then the A* algorithm is used for path planning. However, the proposed approach requires considerable processing time and has a single expansion during path planning and plan paths with many turns, which decreases the working speed of the robot. Therefore, to reduce the calculation time and improve the efficiency of motion planning, modifications such as the matrix method, improved parent node, turning cost, and improved expanded node were proposed in this study. We also present a comprehensive evaluation index to evaluate the performance of the improved algorithm. We validated the efficiency of the proposed method by planning on a tube sheet with square-type tube arrays and experimenting with Model SG.

Investigation of Pressure drop on shell side of shell and tube heat exchanger (원통다관식 열교환기의 쉘측 압력 손실의 연구)

  • Lee, Y.B.;Han, S.G.;Ko, J.M.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.32-37
    • /
    • 2008
  • The present work aims to determine the overall pressure losses in the shell from the point of entry of the fluid to the outlet point of fluid of shell and tube heat exchanger. The main contribution of the present work is concerned with calculating the pressure drop in the interior section and window section. Shell-side flow velocity distributions have been evaluated. We assume that the shell-side fluid is turbulent. The calculation procedure is based upon the Delaware method. Evaluation of pressure drop on the shell side will be helpful for a designer or manufacturer of a heat exchanger.

  • PDF

A Study on the Tube/tubesheet Interface in the Heat Exchangers Jointed by Explosive Bonding (폭발접합된 열교환기류 튜브와 튜브시트의 계면 특성에 관한 고찰)

  • 이병일;공창식;이상철
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.38-47
    • /
    • 2000
  • Characteristics of the interface between tube and tube sheet which were formed by explosive expansion and roll expansion, have been studied in the research. The results are as follows: Optimum amounts of explosives for the expansion of Alloy 600 (19.05mm and 15.88mm) were found to be RDX 3.5-8.5g/m. Because explosive expansion caused les strain hardening and increased bounding strength, characteristics of the explosively expanded were better than those of mechanically expanded. As the transition region of the explosive expansion is inactive, the resistance to the stress corrosion cracking increases by 30∼40% compared to the roll and hydraulic expansion.

  • PDF

Fabrication and properties of Nb$_3$Sn superconducting wire from large billet stage (대형 빌렛 제조에 의한 Nb$_3$Sn 초전도 선재의 가공 및 특성 연구)

  • 하동우;오상수;하홍수;이남진;권영길;류강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.806-809
    • /
    • 2000
  • A key technology for achieving commercial Nb$_3$Sn superconducting wires may be driven from fabrication Process of big-scale billets. Sub-element billet with diameter of 200 mm was designed and fabricated. This billet was hot-extruded and drawn. Cu stabilizer tube, Nb barrier tube and 19 sub-elements inserted Sn core were composed for strand. There was no breakage in the strand that was constituted with annealed sub-element. It was need that billet had to treat HIP because of remove of voids and goad contact between Cu and Nb filaments. Ta wound sheet was better than Ta tube thor barrier in the strand. Ic of the Nb$_3$Sn wire at 127, 4.2K was over than 120 A.

  • PDF

Development of the Discharge Heated Copper Vapor Laser (방전가열형 구리증기레이저의 개발)

  • 임창환;차병헌;성낙진;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.28-32
    • /
    • 1990
  • We have constructed and operated a discharge heated copper vapor laser which generated green (510.6 nm) and yellow (578.2 nm) light. The plasma tube was made of high purity (99.8%) alumina tube which has an inner diameter 25 mm and a length 106 cm. The electrodes, made of molybdenum sheet, were separated 108 cm apart. The laser gave an average power of 10 W at repetition rate of 5 kHz, charging voltage of 10 kV, Ne buffer gas pressure of 40 mbar, and the laser tube temperature of $1500^{\circ}C$..

  • PDF

A Review of Plugging Limit for Steam Generator Tubes in Nuclear Power Plants (원전 증기발생기 전열관 관막음 한계 고찰)

  • Kang, Yong Seok;Lee, Kuk Hee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.10-17
    • /
    • 2020
  • Securing the integrity of steam generator tubes is an essential requirement for safe operation of nuclear power plants. Therefore, tubes that do not satisfy integrity requirements are no longer usable and must be repaired according to the related requirements. In general, the repair criterion is that the damage depth is more than 40% of the tube wall thickness. However, the plugging limit can be changed and be applied, provided a technical proof is given that integrity can be secured against specific degradation at a specific plants and that approval can be obtained from a regulatory agency. A typical example is alternative repair criteria for defects within the tube sheet or tube support plates. In this paper, a background of establishing the plugging limit for steam generator tubes and changes in maintenance criteria are reviewed as examples.