• 제목/요약/키워드: Tube Spinning

검색결과 30건 처리시간 0.019초

튜브 스피닝 공정에서 성형깊이가 컵형 튜브의 변형거동에 미치는 영향 (Effects of Forming Depth on the Deformation Behavior of Cup-like Tubes in Tube Spinning Process)

  • 신영철;윤덕재;임성주;최호준
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.360-365
    • /
    • 2012
  • The aim of this study was to investigate the effects of forming depth on the deformation behavior of cup-like tubes made of AISI1020 steel in tube spinning process. Spinning process was performed on cup-like tubes, which had an inner diameter of 34mm and thicknesses of 7, 8.5 or 11.5mm. The forming depths achieved were 3, 4, and 5.5mm. The complex deformation behaviors occurring during the tube spinning process was explained using the experimental results. Also analyzed were the causes of the material buildup and the bulge defect of inner surface, observed on cross section of tubes. The relationship between tube spinning conditions and the height of bulge defect was examined. The results indicate that bulge defect is increased with a decrease of the forming depth. Moreover, a critical forming depth exists for preventing the generation of the bulge defect in the tube spinning process. The present results will be useful for future decisions of forming depths for successful tube spinning of cup-like tubes.

Free Mandrel에 의한 Metal 스피닝 기술 (Metal Spinning Technology of Using Free Mandrel)

  • 이태호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.241-244
    • /
    • 2010
  • 기존의 재래식, 전단, 튜브 스피닝이 모두 축대칭 제품의 형상화된 맨드릴을 사용하여 가공하여 왔다. 이러한 고전적 기법에서 한걸음 더 나아가 비축대칭, 열처리를 동반한 스피닝, 맨드릴이 자유로운 새로운 공법이 시도되고 있다. 본 조사에서는 주로 자유 맨드릴 공법에 대하여 동향을 조사하였다.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

자동차용 충격흡수기의 튜브 스피닝 공정 해석

  • 김영호;박재우;조호성
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.33-38
    • /
    • 2000
  • In process of tube spinning far shock absorber on vehicles, the selection of feed rate and rounding radius of forming roller and revolution speed of tube and forming roller, forming gap between die and forming roller are very important factors to obtain the optimal process result. In this paper, rigid-plastic FEM and UBET analysis are applied to verify effect of each factors by forming load. We can obtain the optimal conditions to prevent defects during processing.

  • PDF

Three-Dimensional Numerical Analysis for Detonation Propagating in Circular Tube

  • Sugiyama, Yuta;Matsuo, Akiko
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.364-370
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable and unstable pitch modes for the lower and higher activation energies, respectively. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of two modes. The maximum pressure history in the stable pitch remained nearly constant, and the single Mach leg existing on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the unstable pitch due to the generation and decay of complex Mach interaction on the shock front shape. The high frequency oscillation was self-induced because the intensity of the transverse wave was changed during propagation in one cycle. The high frequency behavior was not always the same for each cycle, and therefore the low frequency oscillation was also induced in the pressure history.

  • PDF

Metal 스피닝의 신기술 동향 (The Trend of New Technology in Metal Spinning)

  • 이태호
    • 한국추진공학회지
    • /
    • 제16권1호
    • /
    • pp.79-85
    • /
    • 2012
  • 본 조사에서는 주로 비 축대칭 스피닝, 열처리와 스피닝, 그리고 자유 맨드릴 스피닝 등에 대한 신기술을 동향을 문헌을 통하여 조사하였다. 기존의 재래식, 전단, 튜브 스피닝은 모두 축대칭 맨드릴(제품의 최종 제품의 내경과 같은)을 사용하여 가공하여 왔으나, 신 기법에서는 비 축대칭 맨드릴이나, 맨드릴이 없이, 또 열처리를 동반한 스피닝 공법이 시도되고 있다.

상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구 (A study on the process of tube end spinning by the upper bound method and the finite element method)

  • 김전형;홍성인;이정환;이영선
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.517-526
    • /
    • 1997
  • The purpose of this study is to investigate changes in the wall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables are ; workpiece material, original wall thickness of tube, die angle, friction, and reduction of diameter. The results indicate that these five variables are factors of the increase in wall-thickness and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses similar to actual forming process. Optimum process variables which are obtained by upper bound method are used in ABAQUS pre-model.

  • PDF

Metal 스피닝의 신기술 동향 (New Technology of Metal Spinning)

  • 이태호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.265-271
    • /
    • 2011
  • 기존의 재래식, 전단, 튜브 스피닝은 모두 축대칭 제품의 형상화된 맨드릴을 사용하여 가공하여 왔다. 이러한 고전적 기법에서 한걸음 더 나아가 비축대칭, 열처리를 동반한 스피닝, 자유 맨드릴 공법이 시도되고 있다. 본 조사에서는 비대칭 스피닝과 열처리 스피닝에 등에 대한 신기술 동향과 자유 맨드릴을 사용하는 스피닝 기술 동향을 조사하였다.

  • PDF

On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modeling

  • Liu, Yang;Wang, Xiaofeng;Liu Li;Wu, Bin;Yang, Qin
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.47-61
    • /
    • 2022
  • The present research investigates the dynamic behavior of a rotating functionally graded (FG) nonlocal cylindrical beam. The cylindrical beam is mathematically modeled via third-order beam theory linked with nonlocal strain gradient theory. The tube structure is made of functionally graded materials composed of Aluminum oxide coated on the Nickel, which the mechanical properties vary in the tube radius direction according to the power law. The bending harmonic force is applied in the tube length middle. The nonlocal spinning equations of the tube are derived via the energy method of the Hamilton principle, and they are solved via a robust numerical procedure for different boundary conditions. The main application of the rotating nanostructures is for the production of small-scale motors and devices and the drug-delivery application, the presented results can help the researcher have a better view regarding the different conditions.