• 제목/요약/키워드: Tube Plugging

검색결과 48건 처리시간 0.028초

증기발생기 취출수계통 비재생열교환기 전열관 관막음 기준 설정 (Tube Plugging Criteria for the Non-Regenerative Heat Exchanger in the Steam Generator Blowdown System of Nuclear Power Plant)

  • 김형남;최성남;유현주;최진혁
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.38-40
    • /
    • 2006
  • Nuclear power plants are urged to reduce operating and maintaining costs to remain competitive as well as to increase the safety preventing the radioactive material to the atmosphere. To reduce the cost and to increase the safety, the inspection of balance-of-plant heat exchanger becomes important. However, there are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. The codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the non-regenerative heat exchanger in the steam generator blow-down system of nuclear power plant. This method relies on the similar method used to establish the plugging criteria for the steam generator tubes.

  • PDF

원자력 증기발생기 결함 세관 보수용 폭발 Plugging에 관한 연구 (A Study on the Explosive Plugging of A Repair for Defective Tube/Tubeplate on the Nuclear Steam Generator)

  • 이병일;심상한;강정윤;이상래
    • 화약ㆍ발파
    • /
    • 제17권4호
    • /
    • pp.18-31
    • /
    • 1999
  • The explosive forming has been used for many year to expand tubes into tubesheets. this process has demonstrated ability to direct carefully the energy of an explosive to expand tubes into tubesheet holes without damaging the tubesheet and without causing the excessive cold work at the tube I.D. that is normally associated with mechanical expansion. The success of explosive tube expansion provided the background for the development of the explosive tube plug. The main results are as follows : (1) The optimum explosives and explosive qualities are PETN, RDX, HMS and about 18~31gr/ft of explosive plugging in nuclear steam generator. (2) Explosive plugging's thickness is 0.9~1.8mm. If groove of 0.4 mm formed in plug outside, For the hydraulic leakage is go up, explosive plugging of formed groove are applicate tube and tubrplate. (3) Sheath is designed on the polyethylene of low density, In thermal impact test of the $430^\circ{C}$, hydraulic leakage is $300kg/cm^2$. (4) About 10~60mm oxide inclusions are existed on the space of explosive plug and tube protect to the leakage.

  • PDF

한국표준원전 증기발생기의 관막음 집중 영역 근방에서의 유체유발진동 특성해석 (Characteristics of Flow-induced Vibration for KSNP Steam Generator Tube at Concentrated Tube Plugging Zone)

  • 유기완;조봉호;박치용;박수기
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.452-459
    • /
    • 2003
  • The characteristics of fluid-elastic instability and effects of turbulent excitations for the KSNP steam generator tubes were investigated numerically. The information for the thermal-hydraulic data of the steam generator has been obtained by using the ATHOS3-MOD1 code and the flow-induced vibration(FIV) analysis has been conducted by using the PIAT(program for Integrity assessment of SG tube) code. The KSNP steam generator has the concentrated plugging zone at the vicinity of the stay cylinder inside the SG. To investigate the cause of the concentrated tube plugging zone, the FIV analysis has been performed for various column and row number of the steam generator tubes. From the results of FIV analysis the stability ratio due to the fluid-elastic instability and vibrational amplitude due to the turbulent excitation in the concentrated plugged zone have a trend of larger values than those of the outer concentrated tube Plugging zone.

배관의 Ice Plugging에 의하여 유발되는 열응력의 실험적 규명 (Experimental Evaluation on the Thermal Stress Due to Ice Plugging of Tubes in Nuclear Power Plant)

  • 박영돈;이민우;구태완;김귀순;강범수
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1094-1103
    • /
    • 1999
  • Ice-plugging of tube in nuclear power plant has been widely used for the purpose of preventing flow of the tube temporarily like a valve. Most common plugging method employs Liquid Nitrogen Gas of $-196^{\circ}C$. According to the change of tube materials and its dimension, the thermal stress caused from the application of the frozen gas can be varied. In this research, a series of experiments have been carried out to inspect the effect of tube geometry on thermal stresses induced due to ice-plugging. Two typical dimension of stainless and mild steels of 3 and 6 inch diameters were used for the experiments. Each critical spots were checked using strain rosette gages. Another inspection was made on the pressure and temperature of the fluid. It is shown that significant thermal stress level which can cause plastic deformation of failure has not been noticed in this series of experiments.

A Study on Development of a Plugging Margin Evaluation Method Taking Into Account the Fouling of Shell-and-Tube Heat Exchangers

  • Hwang, Kyeong-Mo;Jin, Tae-Eun;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1934-1941
    • /
    • 2006
  • As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.

다관원통형 열교환기의 파울링 현상을 고려한 관막음 여유 평가법 개발 연구 (A Study on the Development of Plugging Margin Evaluation Method Reflected the Fouling of a Shell-and-Tube Heat Exchanger)

  • 황경모;진태은
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1384-1389
    • /
    • 2004
  • As operating time of heat exchangers progresses, fouling generated by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of domestic nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions as a means of heat exchanger management. Except for the fouling level generated in operation of heat exchangers, also, all of the tubes of heat exchangers have been replaced when the number of plugged tubes exceeds the plugging criteria based on design performance sheet. This paper describes the plugging margin evaluation mettled reflected the fouling of shell-and-tube heat exchangers, which can evaluate the thermal performance for heat exchangers, estimate the future fouling variations, and reflect the current fouling level. To identify the effectiveness of the developed method, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant.

원전 증기발생기 전열관 관막음 한계 고찰 (A Review of Plugging Limit for Steam Generator Tubes in Nuclear Power Plants)

  • 강용석;이국희
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.10-17
    • /
    • 2020
  • Securing the integrity of steam generator tubes is an essential requirement for safe operation of nuclear power plants. Therefore, tubes that do not satisfy integrity requirements are no longer usable and must be repaired according to the related requirements. In general, the repair criterion is that the damage depth is more than 40% of the tube wall thickness. However, the plugging limit can be changed and be applied, provided a technical proof is given that integrity can be secured against specific degradation at a specific plants and that approval can be obtained from a regulatory agency. A typical example is alternative repair criteria for defects within the tube sheet or tube support plates. In this paper, a background of establishing the plugging limit for steam generator tubes and changes in maintenance criteria are reviewed as examples.

집단 관막음된 한국표준원전 증기발생기 전열관의 유체탄성불안정성 특성 평가 (Estimation of Fluid-elastic Instability Characteristics on Group Plugged KSNP Steam Generator Tube)

  • 조봉호;유기완;박치용;박수기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.670-676
    • /
    • 2003
  • To investigate the group plugging effect the fluid-elastic instability analysis has been performed on various column and row number of the KSNP steam generator lutes. This study compares the stability ratio of the plugged tube with that of the intact one. The information on the thermal-hydraulic data of the steam generator have been obtained by using the ATHOS3-MOD1 code with and without the thermal energy transfer at the plugged region. Both of the boundary conditions of hot-leg temperature and feedwater mass flow rate are fixed for this investigation. From the results of this study the stability ratios inside the group plugging zone are decreased slightly. At the outside of group plugging zone, however, most of the stability ratios tend to be increased.

  • PDF

Evaluation of Plugging Criteria on Steam Generator Tubes and Coalescence Model of Collinear Axial Through-Wall Cracks

  • Lee, Jin-Ho;Park, Youn-Won;Song, Myung-Ho;Kim, Young-Jin;Moon, Seong-In
    • Nuclear Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.465-476
    • /
    • 2000
  • In a nuclear power plant, steam generator tubes cover a major portion of the primary pressure-retaining boundary. Thus very conservative approaches have been taken in the light of steam generator tube integrity According to the present criteria, tubes wall-thinned in excess of 40% should be plugged whatever causes are. However, many analytical and experimental results have shown that no safety problems exist even with thickness reductions greater than 40%. The present criterion was developed about twenty years ago when wear and pitting were dominant causes for steam generator tube degradation. And it is based on tubes with single cracks regardless of the fact that the appearance of multiple cracks is more common in general. The objective of this study is to review the conservatism of the present plugging criteria of steam generator tubes and to propose a new coalescence model for two adjacent through-wall cracks existing in steam generator tubes. Using the existing failure models and experimental results, we reviewed the conservatism of the present plugging criteria. In order to verify the usefulness of the proposed new coalescence model, we performed finite element analysis and some parametric studies. Then, we developed a coalescence evaluation diagram.

  • PDF

관막음된 증기발생기 전열관의 유체유발진동 특성 평가 (Estimation of Flow-induced Vibration Characteristics on Plugged Steam Generator Tube)

  • Cho, Bong-Ho;Ryu, Ki-Wahn;Park, Chi-Yong;Park, Su-Ki
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.390.1-390
    • /
    • 2002
  • In this study, we investigate the plugging effect on the CE type steam generator tube. The natural frequency and mode shape will be changed due to decrease of the effective mass distribution along the tube. We compared the variation of stability ratio for plugged tube with that fur unplugged one. The natural frequency increased because of removing the cooling water inside the steam generator tube, but the stability ratio decreased inversely because of changing the vibrational mode shape. We also investigated the turbulent excitation effect.

  • PDF