• Title/Summary/Keyword: Tube Furnace

Search Result 206, Processing Time 0.038 seconds

Experimental study on TDLAS temperature profile measurement using temperature binning method (TDLAS에서 temperature binning 방법을 이용한 온도 측정에 대한 실험적 연구)

  • Yoon, Sungwoon;Kim, Sewon;Shin, Myungchul;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.27-28
    • /
    • 2012
  • Tunable diode laser absorption spectroscopy(TDLAS) measurement techniques for several gases densities and temperatures have been applied in industrial combustion systems. Accurate measurement of temperature profile is very important, especially in power plants and heating furnaces. So profile fitting and temperature binning methods are new issue for accurate measurement of temperature in laser gas sensing. Temperature binning method is applied in this study for the measurement of temperature profile using tube furnace with three temperature zones. In this study the temperature profiles of tube furnace is accurately measured within 5% error, and this technique is proved to be very promising in the field of temperature profile measurement.

  • PDF

Effect of High Ash Coal on Unburned Carbon and NOx Emission (미연분 및 NOx배출 특성에 대한 고회분탄의 영향 연구)

  • Kim, Sangin;Lee, Byunghwa;Lim, Ho;An, Keju;Kim, Mancheol;Song, Juhun;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.341-342
    • /
    • 2012
  • The effect of high ash coal which has relatively high ash content and low combustibility on unburned carbon and NOx emission was experimentally investigated at several excess air ratio and particle size conditions of four coals containing different ash content in a drop tube furnace. Flue gas was measured by Gas analyzer in order to figure out unburned carbon characteristics. The results show that the higher content of ash makes the higher unburned carbon rate, subsequent changes in NOx emission characteristics was investigated.

  • PDF

Pyrolysis Behavior of Pulverized Coal Particles at High Heating Rate (미분탄 입자의 고속가열 열분해거동 해석)

  • JANG, JIHOON;HAN, KARAM;YU, GEUN SIL;LIM, HYEON SOO;LEE, WOOK RYUN;PARK, HO YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.260-268
    • /
    • 2019
  • The pyrolysis characteristics of pulverized coal particle was numerically analyzed with the drop tube furnace. Based on the simulated gas flow field in the drop tube furnace, the particle velocity, temperature and volatile evolution were calculated with the fourth order Runge-Kutta method. The effects of changes in reactor wall temperature and particle diameter on the pyrolysis behavior of coal particle were investigated. The particle heating rate was very sensitive to the reactor wall temperature and particle size, that is, the higher wall temperature and the smaller particle size resulted in the higher heating rate and the consequent quicker volatile evolution.

Technique of Direct Copper to Glass Seal in an Evacuated Tube Solar Collector (진공관형 태양열 집열기의 구리-유리 직접 접합 기술)

  • Kim, Cheol-Young;Lim, Hyong-Bong;Cho, Nam-Kwon;Kwak, Hee-Youl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.544-551
    • /
    • 2006
  • The sealing technique between a glass tube and a copper heat pipe in an evacuated tube solar collector is studied. In this study two different sealing techniques, such as flame method and furnace firing, are examined. After the sealing of a copper to a glass, the oxidation state of the copper and its bonding morphology were examined by SEM and XRD. Its oxidation was retarded by coating of borate solution on the copper, and $Cu_2O(cuprite)$ turned into CuO(tenorite) with increase in a firing temperature and firing time. Porous structure was found in the oxide layer when CuO formed. The best sealing morphology was observed when the thickness of the oxidation layer was less than $20{\mu}m$. The sealing technique performed in a furnace was promising and the satisfactory result was obtained when the sample was fired at $950^{\circ}C$ for 5 min under $N_2$ atmosphere. Annealing procedure is recommended to remove the stress left at the bonding zone.

Char Oxidation Characteristics of High Ash Coal in Drop Tube Furnace (고회분탄의 촤 산화 반응 특성 연구)

  • An, Ke-Ju;Lee, Byoung-Hwa;Kim, Sang-In;Kim, Man-Cheol;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.405-413
    • /
    • 2013
  • The char oxidation characteristics of high ash coal were experimentally investigated at several temperatures (from 900 to $1300^{\circ}C$) for 4 types of coals (Gunvor, Glencore, Noble, and ECM) under atmospheric pressure in a drop tube furnace (DTF). The char reaction rate was calculated from the exhaust gas concentrations (CO and $CO_2$) using FT-IR, and the particle temperature was measured using the two-color method. In addition, the activation energy and pre-exponential factor for high ash coal char were calculated based on the Arrhenius equation. The results show that as the ash content increases, the particle temperature and area reactivity decreases. This is because in high ash coal, the large heat capacity of the ash, ash vaporization, and relatively low fixed carbon content of ash suppress combustibility during char oxidation. As a result, the higher ash content of coal leads to high activation energy.

Char Oxidation Characteristics of Ashless Coal in Drop Tube Furnace (DTF를 이용한 초청정 석탄 촤 산화 반응률 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;Lim, Ho;Yu, Da-Yeon;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.675-681
    • /
    • 2012
  • The char oxidation characteristics of ashless coal with a relatively low ash content and high heating value were experimentally investigated at several temperatures (from $900^{\circ}C$ to $1300^{\circ}C$), in various oxygen concentrations (from 10% to 30%) under atmospheric pressure in a drop tube furnace. The char reaction rate was calculated from the exhaust gas concentrations (CO, $CO_2$) measured by FT-IR, and the particle temperature was measured by the two-color method. In addition, the activation energy and pre-exponential factor of ashless coal char were also calculated based on the Arrhenius equation. The results show that higher temperature and oxygen concentration result in a higher reaction rate of ashless coal, and the activation energy of ashless coal char is similar to that of bituminous coal.

Study on the Unburned Carbon and NOx emission of High Moisture Coal (고수분탄의 건조에 따른 미연분 및 NOx 배출 특성에 관한 연구)

  • Ahn, Seok-Gi;Kim, Jung-Woo;Kim, Gyu-Bo;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Unburned Carbon(UBC) and NOx emissions from High-moisture coal and Dried coal were investigated in Drop Tube Furnace(DTF). When the same amount of the High-moisture coal and Dried coal were oxidized in DTF, the results show that UBC and NOx emissions of Dried coal case is higher than High-moisture coal case. As the moisture in coal decreases from 40% to 10%, the average gas temperature increases but the moisture concentration in DTF decreases. As the wall temperature increases from $900^{\circ}C$ to $1500^{\circ}C$, the UBC decreases and NOx emissions increases. Especially, the difference for UBC between High-moisture coal and Dried coal decreases with increasing wall temperature.

Effect of Ash Content on Unburned Carbon and NOx Emission in a Drop Tube Furnace (DTF 를 이용한 석탄 회분 함량에 따른 미연분 및 NOx 배출 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;An, Ke-Ju;Kim, Man-Cheol;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.963-969
    • /
    • 2014
  • Four coal sources that had different ash contents were evaluated in a drop tube furnace (DTF). Combustion experiments were conducted by using several sources with different particle sizes and excess air ratios under air-staging conditions to determine the optimized combustion conditions of high-ash coal, with an emphasis on the combustion efficiency and NOx emissions. The results show that the higher ash content results in a large amount of carbon remaining unburned, and that this effect is dominant when the largest particle size is used. Furthermore, the ash content of coal does affect the Char-NOx concentration, which decreases with the particle size. The results of this study suggest that an air-staged system can be useful to reduce the NOx emissions of high-ash coal and that control of the air stoichiometric ratio of the primary combustion zone (SR1) is effective for reducing NOx emissions, especially by considering unburned carbon contents.