• Title/Summary/Keyword: Tube Extrusion

Search Result 105, Processing Time 0.022 seconds

A Study on Characteristics of the Material Flow Side-Extrusion by UBET (UBET에 의한 측방압출에서의 재료유동특성에 관한 연구)

  • Kim, Kang-Soo;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.116-121
    • /
    • 1999
  • Since the material flow near the die part in CONFORM (Continuous Extrusion Forming) process is similar to that of side-extrusion, the side-extrusion model of tube shaped aluminum profiles was studied for the die design in CONFORM process. In this paper, the effects of process parameters in the side -extrusion through a two-hole die face, such as material flow, height and thickness of the tube, velocities of punch and lengths of bearing land were investigated using UBET program and DEFORM commercial FEM code. The optimum lengths of the bearing lands and punch velocities for obtaining the straight shape products required were determined.

  • PDF

A Study of Extrusion Process for Al 3003 Condenser Tube (Al 3003 컨덴서 튜브의 직접압출 연구)

  • Bae, Jae-Ho;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1043-1050
    • /
    • 2005
  • Condenser tube is a component of the heat exchanger in automobile and air conditioning apparatus. It is generally made from the 1000 or 3000 series Al alloys that have good heat efficiency. In the case of 3000 series, these have high strength and hardness but have the disadvantage of low extruability. The development of extruding process in condenser tube with 3000 series Al alloys is studied in this paper. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness of welded part and the others in cross-section of tube.

An Axisymmetric Finite Element Analysis of Hot Tube Extrusion Using Ceramic Dies (세라믹 금형을 이용한 열간 튜브 압출의 축대칭 유한요소해석)

  • Kang, Yeon-Sick;Yang, Dong-Yol;Chung, Soon-Kil;Lee, June-Gunn
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.72-80
    • /
    • 1998
  • This study is concerned with the thermo-biscoplastic finite element analysis of hot tube extrusion through square dies with a mandrel. The problem is treated as a non-steady state and the ALE description is used due to abruptly turning flow at the die aperture. Since the contact heat transfer coefficient and the friction factor are required in the analysis experiments are also carried out to determine the values, In order to apply ceramics to an extrusion die the study is focussed on under-standing the characteristics of the process. The simulated results provide the useful informations such as metal flow temperature distribution stress state etc. The elastic analysis of the dies is carried out to obtain the stress state of the ceramic dies.

  • PDF

Optimization of Die Design for Tube Cold Extrusion using Taguchi Method (다구치 방법을 이용한 튜브 냉간 압출 금형의 최적화)

  • Lim, S.S.;Lim, S.J.;Choi, H.J.;Cho, C.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.153-158
    • /
    • 2006
  • Nowadays, hollow upper-shaft of monobloc type has been considered for weight reduction and high quality in the automobile industry. To form the upper-shaft under tube cold extrusion, Taguchi method is applied to optimize the die design in this study. Taguchi method for optimum die design is to establish the optimal combination of design parameters and to reduce a number of experiments. Effect of parameters including the die relief, mandrel, die half angle is investigated and analyzed based on FEA analysis using a FEM commercial software MSC_Marc. Furthermore extrusion experiments have been performed to verify the results investigated in the FEM simulations.

  • PDF

FE analysis of Extrusion Process and Estimation of welding strength for Micro Multi Cell Tube with Serration (세레이션형 미세 멀티셀 튜브 압출 및 접합강도 평가)

  • Lee Jung Min;Kim Byung Min;Jo Hyung Ho;Kang Chung Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.49-59
    • /
    • 2005
  • This paper describes a development of the extrusion process and estimation of the weldability for multi cell tubes used to cooling system of automobiles. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness in welded part and in the others. Finally, the pattern of the mandrel defection is investigated according to shapes of the porthole and/or chamber.

Analysis for Cold Extrusion Process of Internal Spline Using the Tube (중공축 내접 스플라인 성형을 위한 냉간압출공정해석)

  • Wang, C.B.;Kim, D.J.;Lim, S.J.;Kim, Y.K.;Kim, M.E.;Park, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.403-406
    • /
    • 2006
  • Internal spline forming using a thin and long tube can cause the buckling and folding during the forming process. In the study, we proposed two different extrusion processes, and we performed the analysis in order to obtain the optimal process according to the length of land part. Using the rigid-plastic finite element simulation, the proposed processes have been compared by checking the deformed shape and stroke-road relation.

  • PDF

Effects of die cooling on change of extrusion characteristics of Al-Mn-based thin-walled flat multi-port tube (금형 냉각이 Al-Mn계 다중압출 평판관의 압출 특성 변화에 미치는 영향)

  • Young-Chul Shin;Seong-Ho Ha;Tae-Hoon Kang;Kee-Ahn Lee;Seung-Chul Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2023
  • In order to increase the extrusion production speed of aluminum, extrusion die cooling technology using liquid nitrogen has recently attracted a lot of attention. Increasing the extrusion speed increases the temperature of the bearing area of extrusion dies and the extrusion profile, which may cause defects on the surface of extruded profile. Extrusion die cooling technology is to directly inject liquid nitrogen through a cooling channel formed between the die and the backer inside the die-set. The liquid nitrogen removes heat from the die-set, and gaseous nitrogen at the exit of the channel, covers the extrusion profile of an inert atmosphere reducing the oxidation and the profile temperature. The aim of this study is to evaluate the cooling capacity by applying die cooling to extrusion of Al-Mn-based aluminum alloy flat tubes, and to investigate the effects of die cooling on the change in extrusion characteristics of flat tubes. Cooling capacity was confirmed by observing the temperature change of the extrusion profile depending on whether or not die cooling is applied. To observe changes in material characteristics due to die cooling, surface observation is conducted and microstructure and precipitate analysis are performed by FE-SEM on the surface and longitudinal cross section of the extruded flat tubes.

Numerical Study of the Butting Process for a AZ31B Magnesium Alloy Tube (마그네슘 합금(AZ31B) 버티드 튜브 성형 공정 해석)

  • Han, S.S.;Lee, M.Y.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.486-491
    • /
    • 2013
  • A numerical investigation of the butting process for an AZ31B magnesium alloy tube at elevated temperatures was conducted to develop a double-butted magnesium alloy tube. As a result of the current study, it was found that the amount of doming of the tube end, prior ironing-extrusion to obtain high wall thickness reduction are important factors for the butting process of magnesium alloy tubes. There is also a limitation of the thickness profile of butted tube due to buckling of tube wall during the stripping stage.

Prediction of Welding Pressure in the Non Steady State Porthole Die Extrusion of Al7003 Tubes

  • Jo, Hyung-Ho;Lee, Jung-Min;Lee, Seon-Bong;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.36-41
    • /
    • 2003
  • This paper describes a numerical analysis of a non-steady state porthole die extrusion, which is useful for manufacturing long tubes with a hollow section. Materials divided through several portholes are gathered within a chamber and are then welded under high pressure. This weldability classifies the quality of tube products and is affected by process variables and die shapes. However, porthole die extrusion has been executed based on the experience of experts, due to the complicated die assembly and the complexity of metal flow. In order to better assist the design of die and to obtain improvement of productivity, non-steady state 3D FE simulation of porthole die extrusion is required. Therefore, the objective of this study is to analyze the behavior of metal flow and to determine the welding pressure of hot extrusion products under various billet temperatures, bearing length, and tube thickness by FE analysis. The results of FE analysis are compared with those of experiments.