• Title/Summary/Keyword: Truss element

Search Result 297, Processing Time 0.026 seconds

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.801-813
    • /
    • 2015
  • Flexural stiffness of bridge spans has become even more important parameter since Eurocode 1 introduced for railway bridges the serviceability limit state of resonance. For simply supported bridge spans it relies, in general, on accurate assessment of span moment of inertia that governs span flexural stiffness. The paper presents three methods of estimation of the equivalent moment of inertia for such spans: experimental, analytical and numerical. Test loading of the twin truss bridge spans and test results are presented. Recorded displacements and the method of least squares are used to find an "experimental" moment of inertia. Then it is computed according to the analytical method that accounts for joint action of truss girders and composite deck as well as limited span shear stiffness provided by diagonal bracing. Finally a 3D model of finite element method is created to assess the moment of inertia. Discussion of results is given. The comparative analysis proves efficiency of the analytical method.

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

Strategy to increase distortional rigidity of crane box girder: Staggered truss diaphragm

  • Yangzhi Ren;Wenjing Guo;Xuechun Liu;Bin Wang;Piyong Yu;Xiaowen Ji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.461-472
    • /
    • 2023
  • This paper proposes a novel method for increasing the distortional frame rigidity of off-rail box girder bridges for cranes by reinforcing the diaphragm with staggered truss. The study starts by using the Matrix Displacement Method to determine the shear angle of the staggered truss diaphragm under two assumptions: hinge joint and rigid joint. To obtain closed-form solutions for the transversal and longitudinal deformations and warping stress of the crane girder, the study employs the Initial Parameter Method and considers the compatibility of shear deformation at joints between the diaphragms and the girder. The theoretical solutions are validated through finite element analysis, which also confirms that the hinge-joint assumption accurately represents the shear angle of the staggered truss diaphragm in girder distortion. Additionally, the study conducts extensive parameter analyses to examine the impact of staggered truss dimensions on distortional stress and deformation. Furthermore, the study compares the distortional warping stresses of crane girders reinforced with staggered truss diaphragms and those reinforced with perforated ones, emphasizing the importance of incorporating stagger truss in diaphragms. Overall, this paper provides a thorough evaluation of the proposed approach's effectiveness in enhancing the distortional frame rigidity of off-rail box girder bridges for cranes. The findings offer valuable insights into the design and reinforcement of diaphragms using staggered truss to enhance the structural performance of crane girders.

Stent modeling and simulation of truss structure using SMA (형상기억합금 트러스 구조물을 이용한 스텐트의 설계 및 해석)

  • Yang, Seong-Pil;Kim, Sang-Haun;Cho, Mang-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.518-522
    • /
    • 2008
  • Recently, many patients related to heart disease have surgical operation by expanding a blood vessel to treat the angiostenosis. So far most angioplasties have been performed using balloon-dilative stent made of stainless steel. Some researchers are studying the stent made of shape memory alloy (SMA) to operate the angioplasty more easily. and there are several papers which introduce the angioplasty using SMA. However, most of the analysis models for stents are constructed using solid elements. So much computing time is required to solve the analysis model. In this study, we suggest the SMA stent model using 1D truss element which is much faster than stent model using 3D solid element. To represent non-linear behavior of SMA, we apply 1D SMA constitutive equation of Lagoudas'. Pseudo-elastic behavior of stent structures is presented as a numerical example.

  • PDF

Stochastic Finite Element Aalysis of Space Truss by Neumann Expansion Method (뉴우먼 확장법에 의한 3차원 트러스의 확률유한요소해석)

  • 정영수;김기정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.117-124
    • /
    • 1993
  • The Neumann Expansion method has been used for evaluating the response variability of three dimensional truss structure resulting from the spatial variability of material properties with the aid of the finite element method, and in conjunction with the direct Monte Carlo simulation methods. The spatial variabilites are modeled as three-dimensional stochastic field. Yamazaki 〔1〕 has extended the Neumann Expansion method to the plane-strain problem to obtain the response variability of 2 dimensional stochastic systems. This paper presents the extension of the Neumann Expansion method to 3 dimensional stochastic systems. The results by the NEM are compared with those by the deterministic finite element analysis and by the direct Monte Carlo simulation method

  • PDF

A Study on the Geometrically Nonlinear Analysis of Spatial Structures by Using Arc Length Method (호장법을 이용한 공간구조의 기하학적 비선형 해석에 관한 연구)

  • Han, Sang-Eul;Lee, Sang-Ju;Lee, Kyoung-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.381-386
    • /
    • 2007
  • The present study is concerned with the application of Constant arc-length method that proposed by Crisfield in the investigation of the geometrically nonlinear behaviour of spatial structures composed by truss or beam element. The arc-length method can trace the full nonlinear equilibrium path of Spatial structure far beyond the critical point such as limit or bifurcation point. So, we have developed the constant arc-length method of Crisfield to analysis spatial structure. The finite element formulation is used to develop the 3d truss/beam element including the geometrical nonlinear effect. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of Constant arc length method in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Nonlinear stability of the upper chords in half-through truss bridges

  • Wen, Qingjie;Yue, Zixiang;Liu, Zhijun
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.307-319
    • /
    • 2020
  • The upper chords in half-through truss bridges are prone to buckling due to a lack of the upper transverse connections. Taking into account geometric and material nonlinearity, nonlinear finite-element analysis of a simple supported truss bridge was carried out to exhibit effects of different types of initial imperfections. A half-wave of initial imperfection was proved to be effective in the nonlinear buckling analysis. And a parameter analysis of initial imperfections was also conducted to reveal that the upper chords have the greatest impact on the buckling, followed by the bottom chords, vertical and diagonal web members. Yet initial imperfections of transverse beams have almost no effect on the buckling. Moreover, using influence surface method, the combinatorial effects of initial imperfections were compared to demonstrate that initial imperfections of the upper chords play a leading role. Furthermore, the equivalent effective length coefficients of the upper chord were derived to be 0.2~0.28 by different methods, which implies vertical and diagonal web members still provide effective constraints for the upper chord despite a lack of the upper transverse connections between the two upper chords. Therefore, the geometrical and material nonlinear finite-element method is effective in the buckling analysis due to its higher precision. Based on nonlinear analysis and installation deviations of members, initial imperfection of l/500 is recommended in the nonlinear analysis of half-through truss bridges without initial imperfection investigation.

Cost-based design of residential steel roof systems: A case study

  • Rajan, S.D.;Mobasher, B.;Chen, S.Y.;Young, C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.165-180
    • /
    • 1999
  • The cost effectiveness of using steel roof systems for residential buildings is becoming increasingly apparent with the decrease in manufacturing cost of steel components, reliability and efficiency in construction practices, and the economic and environmental concerns. While steel has been one of the primary materials for structural systems, it is only recently that its use for residential buildings is being explored. A comprehensive system for the design of residential steel roof truss systems is presented. In the first stage of the research the design curves obtained from the AISI-LRFD code for the manufactured cross-sections were verified experimentally. Components of the truss systems were tested in order to determine their member properties when subjected to axial force and bending moments. In addition, the experiments were simulated using finite element analysis to provide an additional source of verification. The second stage of the research involved the development of an integrated design approach that would automatically design a lowest cost roof truss given minimal input. A modified genetic algorithm was used to handle sizing, shape and topology variables in the design problem. The developed methodology was implemented in a software system for the purpose of designing the lowest cost truss that would meet the AISI code provisions and construction requirements given the input parameters. The third stage of the research involved full-scale testing of a typical residential steel roof designed using the developed software system. The full scale testing established the factor of safety while validating the analysis and design procedures. Evaluation of the test results indicates that designs using the present approach provide a structure with enough reserve strength to perform as predicted and are very economical.

Determination of Initial Tension and Reference Length of Cables of Cable-Stayed Bridges (사장교의 케이블 초기장력 및 기준길이 결정에 관한 연구)

  • Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.137-146
    • /
    • 2005
  • This study presents the shape iteration method and the updated Lagrangian methods to calculate the initial tension and the reference length of cables of cable-stayed bridges. The girders and towers of cable-stayed bridge are modelled as 3-dimensional frame elements and the cable as nonlinear truss element or Ernst's cable element. Compared with the initial tensions of cables by finite element method in this study and by trial-and error method in practices, the tensions by the former are shown to be a little less than the those by the latter. The reference lengths of cables by Ernst's cable elements are almost consistent with those of cables by nonlinear truss elements. And the reference length of cables in this study are almost consistent with the arc length of beam with the same initial tension. Therefore the reference lengths of cables in cable-stayed bridges are shown to be obtained simply by the theory of beam with the initial tension calculated in this study.

Analysis of dynamic behavior for truss cable structures

  • Zhang, Wen-Fu;Liu, Ying-Chun;Ji, Jing;Teng, Zhen-Chao
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.117-133
    • /
    • 2014
  • Natural vibration of truss cable structures is analyzed based upon the general structural analysis software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic response analysis of truss cable structures is carried out via time-history method. Introducing three natural earthquake waves calculated the results including time-history curve of vertical maximal displacement, time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, and variation curve of maximal internal force of member along span are presented. The results show the formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These provide convenient and simple design method for practical engineering.