• Title/Summary/Keyword: Trueness

Search Result 53, Processing Time 0.026 seconds

Comparison of the accuracy of domestic dental intra-oral scanner(e-scanner) and model scanner (국산 치과용 구강스캐너(e-scanner)와 모델스캐너의 정확도 비교)

  • Kim, Busob;Kim, Jungho
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.53-61
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the discrepancy of scan process in dental intra oral scanner by comparing model scanner and anticipate possibility to introduce intra oral scan technique. Methods: 3D superimposition test was conducted to compare the scan discrepancy. The scanners used in this study are the e-oral scanner, the D750 model scanner, and the high precision CMM(3D Coordinate Measuring Machine). The standard of accuracy verification is ISO 5725-1; trueness and precision. Master model was manufactured by dental stone and scanned 5 times by intra oral, model scanner. Reference data was scanned 5 times by high accuracy CMM to evaluate the trueness. Results: Trueness of D750 scanner were $7.4{\mu}m$ $5.1{\mu}m$ $6.8{\mu}m$ at an abutment, an occluasal, a specific area. and trueness of e-scanner were $20.2{\mu}m$ $27.4{\mu}m$ $37.8{\mu}m$ at an abutment, an occluasal, a specific area. Precision of D750 scanner was $7.04{\mu}m$, e-scanner was $15.95{\mu}m$. Conclusion: When conducting in vitro test, The mean difference of trueness between e-scanner and D750 were $12.8{\mu}m$ at an abutment area, $22.3{\mu}m$ at an occlusal area, $31.0{\mu}m$ at a specific area and $8.91{\mu}m$ in precision. The scan discrepancies are within the range of clinical acceptance.

Effect of rinsing time on the accuracy of interim crowns fabricated by digital light processing: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kang, Seen-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.24-35
    • /
    • 2021
  • PURPOSE. This study was to evaluate the effect of rinsing time on the accuracy of interim crowns fabricated by digital light processing. MATERIALS AND METHODS. The maxillary right first molar master die was duplicated using a silicone material, while a study die was produced using epoxy resin. Scans of the epoxy resin die were used in combination with CAD software to design a maxillary right first molar interim crown. Based on this design, 24 interim crowns were fabricated with digital light processing. This study examined the trueness and precision of products that were processed with one of the three different postprocessing rinsing times (1 min, 5 min, and 10 min). Trueness was measured by superimposing reference data with scanned data from external, intaglio, and marginal surfaces. Precision was measured by superimposing the scan data within the group. The trueness and precision data were analyzed using Kruskal-Wallis, nonparametric, and post-hoc tests, and were compared using a Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. The trueness of the external and intaglio surfaces of crowns varied significantly among the different rinsing times (P=.004, P=.003), but there was no statistically significant difference in terms of trueness measurements of the marginal surfaces (P=.605). In terms of precision, statistically significant differences were found among the external, intaglio, and marginal surfaces (P=.001). CONCLUSION. Interim crowns rinsed for 10 minutes showed high accuracy.

Comparison of fit and trueness of zirconia crowns fabricated by different combinations of open CAD-CAM systems

  • Eun-Bin Bae;Won-Tak Cho;Do-Hyun Park;Su-Hyun Hwang;So-Hyoun Lee;Mi-Jung Yun;Chang-Mo Jeong;Jung-Bo Huh
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.155-170
    • /
    • 2023
  • PURPOSE. This study aims to clinically compare the fitness and trueness of zirconia crowns fabricated by different combinations of open CAD-CAM systems. MATERIALS AND METHODS. Total of 40 patients were enrolled in this study, and 9 different zirconia crowns were prepared per patient. Each crown was made through the cross-application of 3 different design software (EZIS VR, 3Shape Dental System, Exocad) with 3 different processing devices (Aegis HM, Trione Z, Motion 2). The marginal gap, absolute marginal discrepancy, internal gap(axial, line angle, occlusal) by a silicone replica technique were measured to compare the fit of the crown. The scanned inner and outer surfaces of the crowns were compared to CAD data using 3D metrology software to evaluate trueness. RESULTS. There were significant differences in the marginal gap, absolute marginal discrepancy, axial and line angle internal gap among the groups (P < .05) in the comparison of fit. There was no statistically significant difference among the groups in terms of occlusal internal gap. The trueness ranged from 36.19 to 43.78 ㎛ but there was no statistically significant difference within the groups (P > .05). CONCLUSION. All 9 groups showed clinically acceptable level of marginal gaps ranging from 74.26 to 112.20 ㎛ in terms of fit comparison. In the comparison of trueness, no significant difference within each group was spotted. Within the limitation of this study, open CAD-CAM systems used in this study can be assembled properly to fabricate zirconia crown.

Comparison of accuracy of digital data obtained by intra-oral scanner and extra-oral scanner (구강 내 스캐너와 구강 외 스캐너를 사용하여 취득된 스캔 데이터 정확도 비교)

  • Lee, Jae-Jun;Jeong, Il-Do;Kim, Chong-Myung;Park, Jin-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.191-197
    • /
    • 2015
  • Purpose: The purpose of this study was to compare the accuracy of the scan data acquired by the extra-oral and intra-oral scanner. Methods: The maxillary right first molar was made of polymethyl methacrylate(PMMA) specimen. This PMMA specimen was scanned with a engineering scanner and intra-oral scanner. Meanwhile, extra-oral scanner scanned stone die duplicated from PMMA master die. Trueness and precision of scan datas was measured by 3-dimensinal inspection. Independent t-test was conduct to analysis the significant difference(a=0.05). Results: In the trueness analysis, mean of discrepancies were 13.82um for intra oral scanner and 16.84 um for extra-oral scanner. In the precision analysis, mean of discrepancies were 11.72 for inta-oral scanner and 9.2 for extra-oral scanner. Both trueness and precision showed a statistically significant difference (Table 1, p<0.05). Conclusion: Intra-oral scanner can show higher trueness than extra-oral scanner, it has lower precision.

Accuracy of provisional crowns made using stereolithography apparatus and subtractive technique

  • Kang, Seen-Young;Park, Jung-Hyun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.354-360
    • /
    • 2018
  • PURPOSE. To compare and analyze trueness and precision of provisional crowns made using stereolithography apparatus and subtractive technology. MATERIALS AND METHODS. Digital impressions were made using a master model and an intraoral scanner and the crowns were designed with CAD software; in total, 22 crowns were produced. After superimposing CAD design data and scan data using a 3D program, quantitative and qualitative data were obtained for analysis of trueness and precision. Statistical analysis was performed using normality test combined with Levene test for equal variance analysis and independent sample t-test. Type 1 error was set at 0.05. RESULTS. Trueness for the outer and inner surfaces of the SLA crown (SLAC) were $49.6{\pm}9.3{\mu}m$ and $22.5{\pm}5.1{\mu}m$, respectively, and those of the subtractive crown (SUBC) were $31.8{\pm}7.5{\mu}m$ and $14.6{\pm}1.2{\mu}m$, respectively. Precision values for the outer and inner surfaces of the SLAC were $18.7{\pm}6.2{\mu}m$ and $26.9{\pm}8.5{\mu}m$, and those of the SUBC were $25.4{\pm}3.1{\mu}m$ and $13.8{\pm}0.6{\mu}m$, respectively. Trueness values for the outer and inner surfaces of the SLAC and SUBC showed statistically significant differences (P<.001). Precision for the inner surface showed significance (P<.03), whereas that for the outer surface showed no significance (P<.58). CONCLUSION. The study demonstrates that provisional crowns produced by subtractive technology are superior to crowns fabricated by stereolithography in terms of accuracy.

Comparing the accuracy of six intraoral scanners on prepared teeth and effect of scanning sequence

  • Diker, Burcu;Tak, Onjen
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.299-306
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the accuracy of six recently introduced intraoral scanners (IOSs) for single crown preparations isolated from the complete arch, and to determine the effect of scanning sequence on accuracy. MATERIALS AND METHODS. A complete arch with right and left canine preparations for single crowns was used as a study model. The reference dataset was obtained by scanning the complete arch using a highly accurate industrial scanner (ATOS Core 80, GOM GmbH). Six different IOSs (Trios, iTero, Planmeca Emerald, Cerec Omnicam, Primescan, and Virtuo Vivo) were used to scan the model ten times each. The scans performed with each IOS were divided into two groups, based on whether the scanning sequence started from the right or left quadrant (n=5). The accuracy of digital impression was evaluated using three-dimensional analyzing software (Geomagic Studio 12, 3D Systems). The Kruskal Wallis and Mann- Whitney U statistical tests for trueness analysis and the One-way ANOVA test for precision analysis were performed (α=.05). RESULTS. The trueness and precision values were the lowest with the Primescan (25 and 10 ㎛), followed by Trios (40.5 and 11 ㎛), Omnicam (41.5 ㎛ and 18 ㎛), Virtuo Vivo (52 and 37 ㎛), iTero (70 and 12 ㎛) and Emerald (73.5 and 60 ㎛). Regarding trueness, iTero showed more deviation when scanning started from the right (P=.009). CONCLUSION. The accuracy of digital impressions varied depending on the IOS and scanning sequence used. Primescan had the highest accuracy, while Emerald showed the most deviation in accuracy for single crown preparations.

Effect of drill radius setting on prosthesis machining (드릴 반경 설정이 보철물 가공에 미치는 영향)

  • Kim, Chong-Myeong;Kim, So-Ri;Cho, Mi-hyang
    • Journal of Technologic Dentistry
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the trueness and fitness of machined prostheses according to drill radius setting in CAD software. Methods: For this study, standard abutment were replicated in Type IV stone. The stone abutment were scanned using a dental scanner. The CAD design software was designed using scanned abutment data. When designing, the drill radius was set to 0.3 mm and 0 mm, respectively, and saved. The saved design data was milled using a milling machine (n=13). The inner surface of the milled crown was scanned. The trueness and fitness were measured using the inner scan data of prostheses. Independent t-tests were performed to identify significant differences in each data. Results: Trueness values of the data saved with 0.3 mm and 0 mm drill radius were $18.9{\pm}2.3{\mu}m$ and $19.1{\pm}0.9{\mu}m$, respectively. There was no statistically significant difference between the groups. Fitness values of the data saved with 0.3 mm and 0 mm drill radius were $65.5{\pm}0.8{\mu}m$ and $33.8{\pm}1.0{\mu}m$, respectively. There was a statistically significant difference between the groups (p<.05). Conclusion : Setting the drill radius is important to produce clinically good fit prostheses.

Effects of inter-implant distance on the accuracy of intraoral scanner: An in vitro study

  • Thanasrisuebwong, Prakan;Kulchotirat, Tharathip;Anunmana, Chuchai
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.107-116
    • /
    • 2021
  • PURPOSE. Several studies focused on the accuracy of intra-oral scanners in implant dentistry, but the data of inter-implant distances were not widely mentioned. Therefore, this study aimed to evaluate the effect of distance between two implants on the surface distortion of scanned models generated by intra-oral scanners. MATERIALS AND METHODS. Three models with the distances between two fixed scan bodies of 7, 14, and 21 mm were fabricated and scanned with a highly precise D900L dental laboratory scanner as reference models. Fifteen scans were performed with TRIOS3 and CEREC Omnicam intra-oral scanners. Trueness, precision, and angle deviation of the test models were analyzed (α=.05). RESULTS. There was a significant difference among inter-implant distances in both intraoral scanners (P<.001). The error of trueness and precision increased with the increasing inter-implant length, while the angle deviation did not show the same trend. A significant difference in the angle deviation was found among the inter-implant distance. The greatest angle deviation was reported in the 14-mm group of both scanners (P<.05). In contrast, the lowest angle deviation in the 21-mm group of the TR scanner and the 7-mm of the CR scanner was reported (P<.001). CONCLUSION. The inter-implant distance affected the accuracy of intra-oral scanner. The error of trueness and precision increased along with the increasing distance between two implants. However, the distortions were not clinically significant. Regarding angle deviation, the clinically significant angle deviation may be possible when using intra-oral scanners in the partially edentulous arch.

Accuracy evaluation of dental model scanner according to occlusal attrition type (교합면의 교모형태에 따른 치과용 모형 스캐너의 정확도 평가)

  • Kim, Dong-Yeon;Kim, Ji-Hwan;Lee, Beom-Il;Lee, Ju-Hee;Kim, Won-Soo;Park, Jin-Young
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.313-320
    • /
    • 2020
  • Purpose: The purpose of this study is to compare and analyze the accuracy of single crowns based on the type of occlusal surface. Methods: A single crown wax pattern was fabricated in three types of occlusal surface. The prepared wax pattern was replicated with silicone, and stone was injected to create a stone model. The prepared specimens were scanned using a model scanner. Scans were classified into three groups, and each scan was performed six times to analyze the trueness and precision of a single crown. In addition, only the occlusal surface area was analyzed for trueness and precision. Data were analyzed using the Kruskal-Wallis H test, a nonparametric test (α=0.05). Results: With regard to the trueness value of the occlusal scan area, the no occlusal tooth attrition (NA) group showed the largest error of 3.5 ㎛, and the complete occlusal tooth attrition (CA) group showed the lowest value of 3.1 ㎛. The NA group had the greatest precision, and the medium occlusal tooth attrition (MA) group and CA group showed a low precision value of 3.2 ㎛; the difference between the groups was statistically significant (α=0.05). In the color difference map, the CA group showed a lower error than the NA group. Conclusion: The occlusal surface with severe attrition had excellent accuracy, but the accuracy of the group without attrition was low. There were significant differences between groups, but clinically acceptable values were shown.

A Surface Treatment Technique for Interim Crown Fabricated by Three-Dimensional Printing with Digital Light-Processing Technology

  • Son, Keunbada;Lee, Jaesik;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • v.14 no.2
    • /
    • pp.79-89
    • /
    • 2021
  • Purpose: The technique introduced in this study describes a technique for surface treatment that applies a photocuring resin to the surface of an interim crown fabricated by three-dimensional (3D) printing without a conventional polishing method. The purpose of this study was to evaluate marginal and internal fit and the intaglio surface trueness of interim crowns after surface treatment of 3D-printed crowns for clinical application. Materials and Methods: An interim crown was fabricated using a 3D printer with digital light-processing technology, and the surface support was removed. After the posttreatment process, the resin was thinly applied to the surface of the interim crown and polymerized to solve the esthetic problem of the surface without the conventional polishing process. In addition, the marginal and internal fits were measured to verify the clinical use of this technique, and the trueness was evaluated to confirm the deformation of the inner surface according to the technical application of the outer surface of the interim crown. The difference before and after the evaluation by a statistical method was verified using an independent t-test (α=0.05). Result: There was no significant difference in the marginal and internal fit before and after the application of this technique (P>0.05). There was no significant difference in intaglio surface trueness before and after the application of this technique (P=0.963). Conclusion: There was no change in the marginal and internal fit or in intaglio surface trueness of the interim crowns to which this technology was applied. This surface treatment technique is a more convenient method for interim crowns fabricated using 3D-printing technology without the conventional polishing process.