• Title/Summary/Keyword: Tripolyphosphate (TPP)

Search Result 15, Processing Time 0.022 seconds

Effect of Tripolyphosphate (TPP) on the Controlled Release of Cyclosporin A from Chitosan-coated Lipid Microparticles

  • Cheon, Ji-Woong;Shim, Chang-Koo;Chung, Suk-Jae;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.59-63
    • /
    • 2009
  • Soybean phosphatidylcholine microparticles loaded with cyclosporin A (CsA) were prepared by the modified emulsion solvent diffusion and ionic gelation method, in which chitosan on the surface of the microparticles was crosslinked with various concentrations of tripolyphosphate (TPP). The morphology of the particles was characterized by scanning electron microscopy (SEM). The change of particle size and zeta-potential by chitosan on the surface of the lipid microparticles were systematically observed. The encapsulation efficiency and loading capacity of CsA in the particles were determined by high performance liquid chromatography (HPLC). In vitro release kinetics was studied using the dialysis method. In the results, the mean particle size and the zeta-potential of lipid microparticles increased when the attached chitosan was cross-linked (from 2.5 to 6.2 ${\mu}m$ and from -37.0 to +93.0 mV, respectively). The cyclosporin A-loaded lipid microparticles appeared discrete and spherical particles with smooth surfaces. The encapsulation efficiency of CsA was between 79% and 90% while the loading capacity was between 41% and 56%. In vitro release study showed that the crosslinkage of chitosan by TPP significantly delayed the release of CsA from the particles in a concentration-dependent manner. Thus, the release of CsA from the lipid microparticles could be controlled by tripolyphosphate used as a cross-linking agent.

Adsorption Behavior and Mechanism of Tripolyphosphate on Synthetic Goethite

  • Zhong, Yong;Sheng, Dandan;Xie, Fazhi;Li, Guolian;Li, Hui;Han, Xuan;Xie, Wenjie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.146-152
    • /
    • 2019
  • In order to study the transport behavior of tripolyphosphate (TPP) in aqueous solutions, the adsorption process of TPP on synthetic goethite, which exists stably in supergene environment, has been systematically studied. The adsorption properties under different conditions (pH, electrolyte presence, and temperature) were investigated. The adsorption of TPP in the presence of humic acid (HA)/fulvic acid (FA) has also been discussed in this paper. The results indicated that the adsorption capacity quickly increased within the first hour and equilibrium was reached within 24 h. The adsorption capacity decreased from 1.98 to 0.27 mg·g-1 upon increasing the pH from 8.5 to 11.0, whereas the adsorption of TPP on goethite hardly changed with increasing electrolyte concentration. The results of analysis of the kinetic and isothermal models showed that the adsorption was more in accord with the pseudo second-order equation and Freundlich model. The adsorption capacity decreased obviously regardless of the order of addition of TPP, HA, and goethite. Subsequent addition of FA led to a large increase in the adsorption capacity, which might be attributed to the adsorption ability of FA. According to the predictions of the kinetic and isothermal models and the spectroscopic evidence (X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM)), the adsorption mechanism may be mainly based on surface complexation and physical adsorption.

Use of Chitosan-TPP microsphere as a matrix for the encapsulation of somatic embryos of Capsicum annum var. grossum

  • Senarath, Wtpsk;Stevens, W.F.;Lee, Kui-Jae;Rehman, S.;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11b
    • /
    • pp.52-52
    • /
    • 2002
  • Chitosan is a key compound of shrimp waste. It is a biopolymer, which is widely used in the field of medical Sciences. Chitosan-TPP (Tripolyphosphate) complex has more or less similar physical properties as Ca-alginate which can be used for the production of synthetic seeds. Possibility of the use of Chitosan-TPP complex as a matrix for encapsulation of somatic embryos was tested against the Ca-alginate complex (2.5w/v Na-alginate, 100mM CaCl2 at pH 5.5). Somatic embryos grown in the induction medium (IM) were drawn into the viscous chitosan solution (1%) and mixed well by inverting the tube carefully. Then the mixture was dropped at regular intervals into the tripolyphosphate (TPP) solution kept on a magnetic stirrer for bead formation. Synthetic seeds formed were washed and transferred into the incubation medium, then allowed either to air-dry or freeze-dry.(중략)

  • PDF

Properties of β-carotene-loaded chitosan/hyaluronic acid nanocapsules: solubility and redispersibility (베타카로틴 함유 키토산/하이알루론산 나노캡슐의 용해도 및 재분산성 특성)

  • An, Eun Jung;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.66-74
    • /
    • 2022
  • To improve the solubility of β-carotene, three types of β-carotene-loaded nanocapsules were prepared using chitosan (CS) and two cross-linkers, sodium tripolyphosphate (TPP) and hyaluronic acid (HA), alone or in combination (CS-TPP, CS-TPP-HA, and CS-HA). The entrapment efficiency of all nanocapsules significantly increased with an increase in TPP and HA, with the efficiency ranging from 95% to 99%. The solubility of β-carotene was significantly improved by CS nanoencapsulation before and after lyophilization and during storage. CS/HA nanoencapsulation significantly improved (by 11-fold) the water solubility of β-carotene. In particular, CS/HA nanoencapsulation was the most effective in terms of not only the solubility of β-carotene, but also the redispersibility ratio. Therefore, CS/HA encapsulation could be useful for improving the solubility of poorly soluble active ingredients, such as β-carotene.

Controlled Release of Cefadroxil from Chitosan Beads in Dogs (개에서 키토산 비드를 이용한 cefadroxil 방출제어)

  • Kim Dae-Keun;Park Seung-Chun;Kim Tae-Wan;Lee Keun-Woo;Oh Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2005
  • The purpose of this study is to investigate the effects of formulation variables on the release of cefadroxil form chitosan beads, to optimize the preparation of chitosan beads loaded with the drug for controlled release, and to evaluate the drug release form chitosan beads in dogs. Chitosan beads were prepared with tripolyphosphate (TPP) by ionic cross-linking and those sizes were less than 1 mm in diameter. The release behaviour of cefadroxil was affected various factors. As pH of TPP solutions decreased, the entrapment efficiency of cefadroxil increased, whereas the release of cefadroxil decreased. The release rate of cefadroxil form chitosan beads decreaed with the increased TPP solution concentration. When cross-linking time increased, the release of the drug from chitosan beads decreased. The cefadroxil loaded beads were implanted to 4 mixed breed dogs. The concentration of cefadroxil in sera due to chitosan beads implanted with 50 mg/kg body weight of beads was sustained more than 1 ug/ml for the whole 7 days period. Therefore, the cefadroxil loaded beads can be used successfully in pyoderma of dogs. These results indicate that chitosan beads may become a potential delivery system to control the release of drug.

Effects of Various Additives on the Volatile Compounds of Cooked Oil with Mixture Meat(Chicken and Pork) (유 가열 혼합육(계육, 돈육)의 휘발성 성분 및 각종 첨가물의 영향)

  • 홍종만
    • The Korean Journal of Food And Nutrition
    • /
    • v.3 no.2
    • /
    • pp.169-176
    • /
    • 1990
  • Effects of metal chelating agents and metal ions on the volatile substance of cooked oil with chicken and pork mixture meat were examined by chemical analysis and sensory test. The addition of Na-tripolyphosphate(Na-TPP) to chicken and pork mixture meat increased the amount of H2S among volatiles evolved during cooking but decreased that of volatile carbonyl compounds(VCC) This treatment enhanced meat flavor in cooked oil with chicken and pork mixture. It was recognized that the increase in Ha5 evolution was caused by the rise of pH value. On the contrary cupric ion produced a negative effect on the production of chicken and pork mixture meat flavor and this addition increased VCC and TBA value. Other metal chelating agents such as citric acid, phytic acid and EDTA, provided the same results as Na-TPP. It was supposed that these phenomena were attributable to the chelating action to metal prooxidant in mixture meat at could be concluded that a proper evolution of H2S and protection against lipid oxidation during cooking were important to produce an excellent chicken and pork mixture meat flavor.

  • PDF

Drug Delivery Study on Chitosan Nanoparticles Using Iron Oxide (II, III) and Valine (Iron Oxide(II, III)와 Valine을 이용한 키토산 나노입자의 약물전달 연구)

  • Jang, So-Hyeon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.514-520
    • /
    • 2021
  • A drug delivery system (DDS) based on nanoparticles has been used as a mediator to improve the efficacy of a drug by controlling the amount of drug released and delivering it to a target place. Chitosan, which is non-toxic and biodegradable, has good biocompatibility and excellent adsorption, so it can be used as a drug delivery vehicle. Valine, the essential amino acids, helps muscle growth and tissue recovery, and along with other amino acids. It lowers blood sugar levels and increases growth hormone production. In this study, Valine was adsorbed on magnetic chitosan which is capable of drug absorption, and Fe3O4-Valine CNPs was prepared through cross-linking with TPP (Tripolyphosphate). And then absorption and release trends of valine were investigated with the Fe3O4-Valine CNPs. Fe3O4, which has relatively high stability, is used to make the drug carrier magnetic so that the drug can be delivered to a target place. At optimal conditions, the absorption and release tendency of Fe3O4-Valine CNP was confirmed by analyzing by UV-Vis through the Ninhydrin test which is the color reaction of amino acids and by measuring the size of the particles, it was confirmed that it is suitable as a drug carrier.

Antibacterial activity of florfenicol composite nanogels against Staphylococcus aureus small colony variants

  • Liu, Jinhuan;Ju, Mujie;Wu, Yifei;Leng, Nannan;Algharib, Samah Attia;Luo, Wanhe
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.78.1-78.13
    • /
    • 2022
  • Background: Florfenicol might be ineffective for treating Staphylococcus aureus small colony variants (SCVs) mastitis. Objectives: In this study, florfenicol-loaded chitosan (CS)-sodium tripolyphosphate (TPP) composite nanogels were prepared to allow targeted delivery to SCV infected sites. Methods: The formulation screening, the characteristics, in vitro release, antibacterial activity, therapeutic efficacy, and biosafety of the florfenicol composite nanogels were studied. Results: The optimized formulation was obtained when the CS and TPP were 10 and 5 mg/mL, respectively. The encapsulation efficiency, loading capacity, size, polydispersity index, and zeta potential of the optimized florfenicol composite nanogels were 87.3% ± 2.7%, 5.8% ± 1.4%, 280.3 ± 1.5 nm, 0.15 ± 0.03, and 36.3 ± 1.4 mv, respectively. Optical and scanning electron microscopy showed that spherical particles with a relatively uniform distribution and drugs might be incorporated in cross-linked polymeric networks. The in vitro release study showed that the florfenicol composite nanogels exhibited a biphasic pattern with the sustained release of 72.2% ± 1.8% at 48 h in pH 5.5 phosphate-buffered saline. The minimal inhibitory concentrations of commercial florfenicol solution and florfenicol composite nanogels against SCVs were 1 and 0.25 ㎍/mL, respectively. The time-killing curves and live-dead bacterial staining showed that the florfenicol composite nanogels were concentration-dependent. Furthermore, the florfenicol composite nanogels displayed good therapeutic efficacy against SCVs mastitis. Biological safety studies showed that the florfenicol composite nanogels might be a biocompatible preparation because of their non-toxic effects on the renal tissue and liver. Conclusions: Florfenicol composite nanogels might improve the treatment of SCV infections.

Enhanced antibacterial activity of tilmicosin against Staphylococcus aureus small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels

  • Luo, Wanhe;Liu, Jinhuan;Zhang, Shanling;Song, Wei;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.1.1-1.11
    • /
    • 2022
  • Background: The poor bioadhesion capacity of tilmicosin resulting in treatment failure for Staphylococcus aureus small colony variants (SASCVs) mastitis. Objectives: This study aimed to increase the bioadhesion capacity of tilmicosin for the SASCVs strain and improve the antibacterial effect of tilmicosin against cow mastitis caused by the SASCVs strain. Methods: Tilmicosin-loaded chitosan oligosaccharide (COS)-sodium carboxymethyl cellulose (CMC) composite nanogels were formulated by an electrostatic interaction between COS (positive charge) and CMC (negative charge) using sodium tripolyphosphate (TPP) (ionic crosslinkers). The formation mechanism, structural characteristics, bioadhesion, and antibacterial activity of tilmicosin composite nanogels were studied systematically. Results: The optimized formulation was comprised of 50 mg/mL (COS), 32 mg/mL (CMC), and 0.25 mg/mL (TPP). The size, encapsulation efficiency, loading capacity, polydispersity index, and zeta potential of the optimized tilmicosin composite nanogels were 357.4 ± 2.6 nm, 65.4 ± 0.4%, 21.9 ± 0.4%, 0.11 ± 0.01, and -37.1 ± 0.4 mV, respectively; the sedimentation rate was one. Scanning electron microscopy showed that tilmicosin might be incorporated in nano-sized crosslinked polymeric networks. Moreover, adhesive studies suggested that tilmicosin composite nanogels could enhance the bioadhesion capacity of tilmicosin for the SASCVs strain. The inhibition zone of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels were 2.13 ± 0.07, 3.35 ± 0.11, and 1.46 ± 0.04 cm, respectively. The minimum inhibitory concentration of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels against the SASCVs strain were 2, 1, and 1 ㎍/mL, respectively. The in vitro time-killing curves showed that the tilmicosin composite nanogels increased the antibacterial activity against the SASCVs strain. Conclusions: This study provides a potential strategy for developing tilmicosin composite nanogels to treat cow mastitis caused by the SASCVs strain.

Chitosan Nanoparticles as a New Delivery System for the Anti-HIV Drug Zidovudine

  • Dahmane, El Montassir;Rhazi, Mohammed;Taourirte, Moha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1333-1338
    • /
    • 2013
  • Chitosan-based nanoparticles (CSNP) were prepared through ionic cross-linking and gelation of chitosan (CS) by tripolyphosphate (TPP). CS properties such as molecular weight, and preparation conditions were screened and the resulting nanoparticles were examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained particles were consistently spherical with an overall diameter of approximately $107{\pm}20$ nm. They were successfully used as a carrier for Zidovudine, an anti-human immunodeficiency virus (HIV) which, to our knowledge, is novel. The encapsulation ability, loading capacity, and controlled release behavior for these CSNP was evaluated. Results indicated that their intrinsic properties were strongly affected by properties inherent to CS such as molecular weight, and by the preparation condition, such as cross-linking density, which depends on the concentration of the cross-linker. In vitro release tests for the entrapped zidovudine showed that the CNNP provided a continuous release that can last upwards 20 h.