DOI QR코드

DOI QR Code

Drug Delivery Study on Chitosan Nanoparticles Using Iron Oxide (II, III) and Valine

Iron Oxide(II, III)와 Valine을 이용한 키토산 나노입자의 약물전달 연구

  • Jang, So-Hyeon (Department of Chemical and Biochemical Engineering, Gachon University) ;
  • Kang, Ik-Joong (Department of Chemical and Biochemical Engineering, Gachon University)
  • 장소현 (가천대학교 화공생명공학과) ;
  • 강익중 (가천대학교 화공생명공학과)
  • Received : 2021.08.09
  • Accepted : 2021.10.01
  • Published : 2021.11.01

Abstract

A drug delivery system (DDS) based on nanoparticles has been used as a mediator to improve the efficacy of a drug by controlling the amount of drug released and delivering it to a target place. Chitosan, which is non-toxic and biodegradable, has good biocompatibility and excellent adsorption, so it can be used as a drug delivery vehicle. Valine, the essential amino acids, helps muscle growth and tissue recovery, and along with other amino acids. It lowers blood sugar levels and increases growth hormone production. In this study, Valine was adsorbed on magnetic chitosan which is capable of drug absorption, and Fe3O4-Valine CNPs was prepared through cross-linking with TPP (Tripolyphosphate). And then absorption and release trends of valine were investigated with the Fe3O4-Valine CNPs. Fe3O4, which has relatively high stability, is used to make the drug carrier magnetic so that the drug can be delivered to a target place. At optimal conditions, the absorption and release tendency of Fe3O4-Valine CNP was confirmed by analyzing by UV-Vis through the Ninhydrin test which is the color reaction of amino acids and by measuring the size of the particles, it was confirmed that it is suitable as a drug carrier.

나노입자에 기초한 약물 전달 시스템(DDS, Drug Delivery System)은 약물 방출의 매개체로서 약물의 방출량을 조절하고 적합한 장소에 전달하여 효능을 향상시키기 위해 사용되어왔다. 독성이 없고 생 분해성인 Chitosan은 좋은 생체 적합성을 가지고, 뛰어난 흡착력을 가져 약물전달체로 제조할 수 있다. 기본 아미노산 중 하나인 Valine은 근육의 성장과 조직의 회복을 돕는 물질이며 다른 아미노산과 함께 혈당 수치를 낮추고 성장호르몬 생산을 증가시키는 필수아미노산이다. 본 연구에서는 Valine을 약물 흡수가 가능한 자성 Chitosan에 흡착시켜 TPP (tripolyphosphate)와의 cross-linking을 통해 약물전달체를 제조한 후, 흡수 및 방출 경향성에 대해 알아보았다. 안정성이 비교적 높은 Fe3O4를 사용하여 약물전달체가 자성을 띠게 만들어 표적 부위로 약물을 전달할 수 있도록 하였다. 최적의 조건에서 제조한 약물전달체를 아미노산의 정색반응인 Ninhydrin test를 통해 흡수 및 방출 경향성을 UV-Vis로 분석하여 확인하고 입자의 크기를 측정함으로써 약물전달체로 적합한 것을 확인하였다.

Keywords

Acknowledgement

본 논문은 2015년도 가천대학교 교내연구비 지원에 의한 결과임(GCU-2015-0090).

References

  1. Kingsley, J. D., Dou, H., Morehead, J., Rabinow, B., Gendelman, H. E. and Destache, C. J., "Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System," Journal of Neuroimmune Pharmacology, 1, 340-350(2006). https://doi.org/10.1007/s11481-006-9032-4
  2. Journal of Advanced Pharmacy Education & Research 1(4): 201-213 (2011) ISSN 2249-3379 201 Yadav A., Ghune M., Jain D. K., "Nano-medicine Based Drug Delivery System," Journal of Advanced Pharmacy Education & Research, 1, 201-213(2011).
  3. Singh, R. and Lillard, J. W., "Nanoparticle-based Targeted Drug Delivery," Exp Mol Pathol, 86, 215-223(2009). https://doi.org/10.1016/j.yexmp.2008.12.004
  4. Farokhzad, O. C. and Langer, R., "Impact of Nanotechnology on Drug Delivery," ACS Nano, 3, 16-20(2009). https://doi.org/10.1021/nn900002m
  5. Hirano, S., Seino, H., Akiyama, Y. and Nonaka, I., "Chitosan: A Biocompatible Material for Oral and Intravenous Administrations," Progress in Biomedical Polymers, 283-290(1990).
  6. Ahmed, T. A. and Aljaeid, B. M., "Preparation, Characterization, and Potential Application of Chitosan, Chitosan Derivatives, and Chitosan Metal Nanoparticles in Pharmaceutical Drug Delivery," Drug Des Devel Ther, 10, 483-507(2016). https://doi.org/10.2147/DDDT.S99651
  7. Prabaharan, M., "Review Paper: Chitosan Derivatives as Promising Materials for Controlled Drug Delivery," J. Biomater Appl., 23, 5-36(2008). https://doi.org/10.1177/0885328208091562
  8. Li, G. Y., Jiang, Y. R., Huang, K. L., Ding, P. D. and Chen, J., "Preparation and Properties of Magnetic Fe3O4-Chitosan Nanoparticles," Journal of Alloys and Compounds, 466, 451-456(2008). https://doi.org/10.1016/j.jallcom.2007.11.100
  9. Arum, Y., Oh, Y. O., Kang, H. W., Ahn, S. H. and Oh, J. H., "Chitosan-Coated Fe3O4 Magnetic Nanopar-ticles as Carrier of Cisplatin for Drug Delivery," Fisheries and Aquatic Sciences, 18, 89-98(2015). https://doi.org/10.5657/FAS.2015.0089
  10. Luangtana-anan, M., Nunthanid, J. and Limmatvapirat, S., "Potential of Different Salt Forming Agents on the Formation of Chitosan Nanoparticles as Carriers for Protein Drug Delivery Systems," Journal of Pharmaceutical Investigation, 49, 37-44(2019). https://doi.org/10.1007/s40005-017-0369-x
  11. Meguid, M. M., Matthews, D. E., Meredith, C. N., Young, V. R., "Valine Kinetics at Graded Valine Intakes in Young Men," The American Journal of Clinical Nutrition, 43, 781-786(1986). https://doi.org/10.1093/ajcn/43.5.781
  12. Galhoum, A. A., Mahfouz, M. G., Atia, A. A., Abdel-Rehem, S. T., Gomaa, N. A., Vincent, T. and Guibal, E., "Amino Acid Functionalized Chitosan Magnetic Nanobased Particles for Uranyl Sorption," Ind. Eng. Chem. Res, 54, 12374-12385(2015). https://doi.org/10.1021/acs.iecr.5b03331
  13. Kalant, H., "Colorimetric Ninhydrin Reaction for Measurement of α-Amino Nitrogen," Anal. Chem, 265-266(1956). https://doi.org/10.1021/ac60196a900
  14. Moore, S., "Amino Acid Analysis: Aqueous Dimethyl Sulfoxide as Solvent for the Ninhydrin Reaction," Journal of Biological Chemistry., 243, 6281-6283(1968). https://doi.org/10.1016/S0021-9258(18)94488-1
  15. Sun, S. W., Lin, Y. C., Weng, Y. M. and Chen, M. J., "Efficiency Improvements on Ninhydrin Method for Amino Acid Quantification," Journal of Food Composition and Analysis, 19, 112-117 (2006). https://doi.org/10.1016/j.jfca.2005.04.006
  16. Nasti, A., Zaki, N. M., Leonardis, P. D., Ungphaiboon, S., Sansongsak, P., Rimoli, M. G. and Tirelli, N., "Chitosan/TPP and Chitosan/TPP-hyaluronic Acid Nanoparticles: Systematic Optimisation of the Preparative Process and Preliminary Biological Evaluation," Pharmaceutical Research, 26, 1918-1930(2009). https://doi.org/10.1007/s11095-009-9908-0
  17. Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M. and Rivera-Rodriguez, G. R., "Parameters Influencing the Size of Chitosan-TPP Nano- and Microparticles," Scientific Reports, 8, 4695 (2018). https://doi.org/10.1038/s41598-018-23064-4
  18. Ko, J. A., Park, H. J., Hwang, S. J., Park, J. B. and Lee, J. S., "Preparation and Characterization of Chitosan Microparticles Intended for Controlled Drug Delivery," International Journal of Pharmaceutics, 249, 165-174(2002). https://doi.org/10.1016/S0378-5173(02)00487-8
  19. Rampino, A., Borgogna, M., Blasi, P., Bellich, B. and Cesaro, A., "Chitosan Nanoparticles: Preparation, Size Evolution and Stability," Pharmaceutical Nanotechnology, 455, 219-228(2013).
  20. Lim, J. W. and Kang, I. J., "Fabrication of Chitosan-Gold Nanoshells for γ-Aminobutyric Acid Detection as a Surface-enhanced Raman Scattering Substrate," Bulletin of the Korean Chemical Society, 36, 672-677(2015). https://doi.org/10.1002/bkcs.10130
  21. Lim, J. W. and Kang, I. J., "Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules," Bulletin of the Korean Chemical Society, 35, 25-29(2014). https://doi.org/10.5012/bkcs.2014.35.1.25