• 제목/요약/키워드: Tripolyphosphate (TPP)

검색결과 15건 처리시간 0.023초

Effect of Tripolyphosphate (TPP) on the Controlled Release of Cyclosporin A from Chitosan-coated Lipid Microparticles

  • Cheon, Ji-Woong;Shim, Chang-Koo;Chung, Suk-Jae;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권1호
    • /
    • pp.59-63
    • /
    • 2009
  • Soybean phosphatidylcholine microparticles loaded with cyclosporin A (CsA) were prepared by the modified emulsion solvent diffusion and ionic gelation method, in which chitosan on the surface of the microparticles was crosslinked with various concentrations of tripolyphosphate (TPP). The morphology of the particles was characterized by scanning electron microscopy (SEM). The change of particle size and zeta-potential by chitosan on the surface of the lipid microparticles were systematically observed. The encapsulation efficiency and loading capacity of CsA in the particles were determined by high performance liquid chromatography (HPLC). In vitro release kinetics was studied using the dialysis method. In the results, the mean particle size and the zeta-potential of lipid microparticles increased when the attached chitosan was cross-linked (from 2.5 to 6.2 ${\mu}m$ and from -37.0 to +93.0 mV, respectively). The cyclosporin A-loaded lipid microparticles appeared discrete and spherical particles with smooth surfaces. The encapsulation efficiency of CsA was between 79% and 90% while the loading capacity was between 41% and 56%. In vitro release study showed that the crosslinkage of chitosan by TPP significantly delayed the release of CsA from the particles in a concentration-dependent manner. Thus, the release of CsA from the lipid microparticles could be controlled by tripolyphosphate used as a cross-linking agent.

Adsorption Behavior and Mechanism of Tripolyphosphate on Synthetic Goethite

  • Zhong, Yong;Sheng, Dandan;Xie, Fazhi;Li, Guolian;Li, Hui;Han, Xuan;Xie, Wenjie;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.146-152
    • /
    • 2019
  • In order to study the transport behavior of tripolyphosphate (TPP) in aqueous solutions, the adsorption process of TPP on synthetic goethite, which exists stably in supergene environment, has been systematically studied. The adsorption properties under different conditions (pH, electrolyte presence, and temperature) were investigated. The adsorption of TPP in the presence of humic acid (HA)/fulvic acid (FA) has also been discussed in this paper. The results indicated that the adsorption capacity quickly increased within the first hour and equilibrium was reached within 24 h. The adsorption capacity decreased from 1.98 to 0.27 mg·g-1 upon increasing the pH from 8.5 to 11.0, whereas the adsorption of TPP on goethite hardly changed with increasing electrolyte concentration. The results of analysis of the kinetic and isothermal models showed that the adsorption was more in accord with the pseudo second-order equation and Freundlich model. The adsorption capacity decreased obviously regardless of the order of addition of TPP, HA, and goethite. Subsequent addition of FA led to a large increase in the adsorption capacity, which might be attributed to the adsorption ability of FA. According to the predictions of the kinetic and isothermal models and the spectroscopic evidence (X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM)), the adsorption mechanism may be mainly based on surface complexation and physical adsorption.

Use of Chitosan-TPP microsphere as a matrix for the encapsulation of somatic embryos of Capsicum annum var. grossum

  • Senarath, Wtpsk;Stevens, W.F.;Lee, Kui-Jae;Rehman, S.;Lee, Wang-Hyu
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 제9차 국제심포지움 및 추계정기학술발표회
    • /
    • pp.52-52
    • /
    • 2002
  • Chitosan is a key compound of shrimp waste. It is a biopolymer, which is widely used in the field of medical Sciences. Chitosan-TPP (Tripolyphosphate) complex has more or less similar physical properties as Ca-alginate which can be used for the production of synthetic seeds. Possibility of the use of Chitosan-TPP complex as a matrix for encapsulation of somatic embryos was tested against the Ca-alginate complex (2.5w/v Na-alginate, 100mM CaCl2 at pH 5.5). Somatic embryos grown in the induction medium (IM) were drawn into the viscous chitosan solution (1%) and mixed well by inverting the tube carefully. Then the mixture was dropped at regular intervals into the tripolyphosphate (TPP) solution kept on a magnetic stirrer for bead formation. Synthetic seeds formed were washed and transferred into the incubation medium, then allowed either to air-dry or freeze-dry.(중략)

  • PDF

베타카로틴 함유 키토산/하이알루론산 나노캡슐의 용해도 및 재분산성 특성 (Properties of β-carotene-loaded chitosan/hyaluronic acid nanocapsules: solubility and redispersibility)

  • 안은정;이지수;이현규
    • 한국식품과학회지
    • /
    • 제54권1호
    • /
    • pp.66-74
    • /
    • 2022
  • β-Carotene의 용해도를 증진시키기 키토산을 기본 피복물질로 사용하면서 TPP와 HA를 단독 또는 복합적으로 사용하여 세 종류(CS/TPP, CS/TPP/HA와 CS/HA)의 나노캡슐을 제조하였다. 모든 종류의 나노캡슐에서 95%가 넘는 높은 포집효율이 관측되었다. β-Carotene 에멀젼의 저장안정성이 취약한 pH 2-3 조건에서 8일동안 저장하였을 때 CS/TPP/HA와 CS/HA 나노캡슐의 물리적 특성뿐만 아니라 β-carotene의 용해도 또한 안정적으로 유지되는 경향을 나타냈다. β-Carotene의 용해도를 나노캡슐의 건조 전과 후 관측한 결과, 대조군에 비해서 나노캡슐화에 의해서 유의적으로 향상된 것을 확인할 수 있었다. 특히 CS/HA 나노캡슐은 용해도와 재분산성의 측면에서 모두 우수한 특성을 나타냈다. 본 연구를 통해서 CS/HA 나노캡슐은 β-carotene과 같은 난용성 활성성분의 용해도를 증진시킬 수 있는 식품산업에 활용가능한 전달체로서 이용 가능성이 높을 것으로 판단된다.

개에서 키토산 비드를 이용한 cefadroxil 방출제어 (Controlled Release of Cefadroxil from Chitosan Beads in Dogs)

  • 김대근;박승춘;김태완;이근우;오태호
    • 한국임상수의학회지
    • /
    • 제22권3호
    • /
    • pp.175-180
    • /
    • 2005
  • 본 연구는 개에서 키토산 비드를 이용한 cefadroxil 방출에 영향을 주는 인자, 약물을 함유한 최적의 키토산 비드의 제조, 그리고 키토산 비드로부터 약물의 방출을 평가하는 것이다. 키토산 비드는 tripolyphosphate (TPP)와 이온결합으로 생성되며 비드의 크기는 1 mm 미만이었다. 비드로부터 cefadroxil 방출은 여러 인자에 영항을 받는다. TPP의 pH가 감소할수록 cefadroxil의 비드내 함유량은 증가하지만, 비드로부터 방출량은 감소한다. Cefadroxil의 방출속도은 TPP 농도가 증가할수록 감소한다. 결합시간이 길어지면, 방출량이 감소한다. Cefadroxil을 함유한 키토산 비드를 50 mg/kg 용량으로 건강한 개 4두의 피하에 이식한 결과, cefadroxil의 혈청내 농도는 1 ${\mu}g/ml$ 이상으로 7일간 유지되었다. 따라서 cefadroxil을 함유한 키토산 비드는 개의 농피증 치료에 유용한 것으로 사료되며 약물방출을 통제할 수 있는 약물수송체가 이용될 수 있다고 사료된다.

유 가열 혼합육(계육, 돈육)의 휘발성 성분 및 각종 첨가물의 영향 (Effects of Various Additives on the Volatile Compounds of Cooked Oil with Mixture Meat(Chicken and Pork))

  • 홍종만
    • 한국식품영양학회지
    • /
    • 제3권2호
    • /
    • pp.169-176
    • /
    • 1990
  • Effects of metal chelating agents and metal ions on the volatile substance of cooked oil with chicken and pork mixture meat were examined by chemical analysis and sensory test. The addition of Na-tripolyphosphate(Na-TPP) to chicken and pork mixture meat increased the amount of H2S among volatiles evolved during cooking but decreased that of volatile carbonyl compounds(VCC) This treatment enhanced meat flavor in cooked oil with chicken and pork mixture. It was recognized that the increase in Ha5 evolution was caused by the rise of pH value. On the contrary cupric ion produced a negative effect on the production of chicken and pork mixture meat flavor and this addition increased VCC and TBA value. Other metal chelating agents such as citric acid, phytic acid and EDTA, provided the same results as Na-TPP. It was supposed that these phenomena were attributable to the chelating action to metal prooxidant in mixture meat at could be concluded that a proper evolution of H2S and protection against lipid oxidation during cooking were important to produce an excellent chicken and pork mixture meat flavor.

  • PDF

Iron Oxide(II, III)와 Valine을 이용한 키토산 나노입자의 약물전달 연구 (Drug Delivery Study on Chitosan Nanoparticles Using Iron Oxide (II, III) and Valine)

  • 장소현;강익중
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.514-520
    • /
    • 2021
  • 나노입자에 기초한 약물 전달 시스템(DDS, Drug Delivery System)은 약물 방출의 매개체로서 약물의 방출량을 조절하고 적합한 장소에 전달하여 효능을 향상시키기 위해 사용되어왔다. 독성이 없고 생 분해성인 Chitosan은 좋은 생체 적합성을 가지고, 뛰어난 흡착력을 가져 약물전달체로 제조할 수 있다. 기본 아미노산 중 하나인 Valine은 근육의 성장과 조직의 회복을 돕는 물질이며 다른 아미노산과 함께 혈당 수치를 낮추고 성장호르몬 생산을 증가시키는 필수아미노산이다. 본 연구에서는 Valine을 약물 흡수가 가능한 자성 Chitosan에 흡착시켜 TPP (tripolyphosphate)와의 cross-linking을 통해 약물전달체를 제조한 후, 흡수 및 방출 경향성에 대해 알아보았다. 안정성이 비교적 높은 Fe3O4를 사용하여 약물전달체가 자성을 띠게 만들어 표적 부위로 약물을 전달할 수 있도록 하였다. 최적의 조건에서 제조한 약물전달체를 아미노산의 정색반응인 Ninhydrin test를 통해 흡수 및 방출 경향성을 UV-Vis로 분석하여 확인하고 입자의 크기를 측정함으로써 약물전달체로 적합한 것을 확인하였다.

Antibacterial activity of florfenicol composite nanogels against Staphylococcus aureus small colony variants

  • Liu, Jinhuan;Ju, Mujie;Wu, Yifei;Leng, Nannan;Algharib, Samah Attia;Luo, Wanhe
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.78.1-78.13
    • /
    • 2022
  • Background: Florfenicol might be ineffective for treating Staphylococcus aureus small colony variants (SCVs) mastitis. Objectives: In this study, florfenicol-loaded chitosan (CS)-sodium tripolyphosphate (TPP) composite nanogels were prepared to allow targeted delivery to SCV infected sites. Methods: The formulation screening, the characteristics, in vitro release, antibacterial activity, therapeutic efficacy, and biosafety of the florfenicol composite nanogels were studied. Results: The optimized formulation was obtained when the CS and TPP were 10 and 5 mg/mL, respectively. The encapsulation efficiency, loading capacity, size, polydispersity index, and zeta potential of the optimized florfenicol composite nanogels were 87.3% ± 2.7%, 5.8% ± 1.4%, 280.3 ± 1.5 nm, 0.15 ± 0.03, and 36.3 ± 1.4 mv, respectively. Optical and scanning electron microscopy showed that spherical particles with a relatively uniform distribution and drugs might be incorporated in cross-linked polymeric networks. The in vitro release study showed that the florfenicol composite nanogels exhibited a biphasic pattern with the sustained release of 72.2% ± 1.8% at 48 h in pH 5.5 phosphate-buffered saline. The minimal inhibitory concentrations of commercial florfenicol solution and florfenicol composite nanogels against SCVs were 1 and 0.25 ㎍/mL, respectively. The time-killing curves and live-dead bacterial staining showed that the florfenicol composite nanogels were concentration-dependent. Furthermore, the florfenicol composite nanogels displayed good therapeutic efficacy against SCVs mastitis. Biological safety studies showed that the florfenicol composite nanogels might be a biocompatible preparation because of their non-toxic effects on the renal tissue and liver. Conclusions: Florfenicol composite nanogels might improve the treatment of SCV infections.

Enhanced antibacterial activity of tilmicosin against Staphylococcus aureus small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels

  • Luo, Wanhe;Liu, Jinhuan;Zhang, Shanling;Song, Wei;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.1.1-1.11
    • /
    • 2022
  • Background: The poor bioadhesion capacity of tilmicosin resulting in treatment failure for Staphylococcus aureus small colony variants (SASCVs) mastitis. Objectives: This study aimed to increase the bioadhesion capacity of tilmicosin for the SASCVs strain and improve the antibacterial effect of tilmicosin against cow mastitis caused by the SASCVs strain. Methods: Tilmicosin-loaded chitosan oligosaccharide (COS)-sodium carboxymethyl cellulose (CMC) composite nanogels were formulated by an electrostatic interaction between COS (positive charge) and CMC (negative charge) using sodium tripolyphosphate (TPP) (ionic crosslinkers). The formation mechanism, structural characteristics, bioadhesion, and antibacterial activity of tilmicosin composite nanogels were studied systematically. Results: The optimized formulation was comprised of 50 mg/mL (COS), 32 mg/mL (CMC), and 0.25 mg/mL (TPP). The size, encapsulation efficiency, loading capacity, polydispersity index, and zeta potential of the optimized tilmicosin composite nanogels were 357.4 ± 2.6 nm, 65.4 ± 0.4%, 21.9 ± 0.4%, 0.11 ± 0.01, and -37.1 ± 0.4 mV, respectively; the sedimentation rate was one. Scanning electron microscopy showed that tilmicosin might be incorporated in nano-sized crosslinked polymeric networks. Moreover, adhesive studies suggested that tilmicosin composite nanogels could enhance the bioadhesion capacity of tilmicosin for the SASCVs strain. The inhibition zone of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels were 2.13 ± 0.07, 3.35 ± 0.11, and 1.46 ± 0.04 cm, respectively. The minimum inhibitory concentration of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels against the SASCVs strain were 2, 1, and 1 ㎍/mL, respectively. The in vitro time-killing curves showed that the tilmicosin composite nanogels increased the antibacterial activity against the SASCVs strain. Conclusions: This study provides a potential strategy for developing tilmicosin composite nanogels to treat cow mastitis caused by the SASCVs strain.

Chitosan Nanoparticles as a New Delivery System for the Anti-HIV Drug Zidovudine

  • Dahmane, El Montassir;Rhazi, Mohammed;Taourirte, Moha
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1333-1338
    • /
    • 2013
  • Chitosan-based nanoparticles (CSNP) were prepared through ionic cross-linking and gelation of chitosan (CS) by tripolyphosphate (TPP). CS properties such as molecular weight, and preparation conditions were screened and the resulting nanoparticles were examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained particles were consistently spherical with an overall diameter of approximately $107{\pm}20$ nm. They were successfully used as a carrier for Zidovudine, an anti-human immunodeficiency virus (HIV) which, to our knowledge, is novel. The encapsulation ability, loading capacity, and controlled release behavior for these CSNP was evaluated. Results indicated that their intrinsic properties were strongly affected by properties inherent to CS such as molecular weight, and by the preparation condition, such as cross-linking density, which depends on the concentration of the cross-linker. In vitro release tests for the entrapped zidovudine showed that the CNNP provided a continuous release that can last upwards 20 h.