• Title/Summary/Keyword: Triple injection

Search Result 28, Processing Time 0.02 seconds

The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine (3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향)

  • Choi, Wook;Park, Cheol-Woong;Kook, Sang-Hoon;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

An Improved Round Reduction Attack on Triple DES Using Fault Injection in Loop Statement (반복문 오류 주입을 이용한 개선된 Triple DES 라운드 축소 공격)

  • Choi, Doo-Sik;Oh, Doo-Hwan;Park, Jeong-Soo;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.709-717
    • /
    • 2012
  • The round reduction on block cipher is a fault injection attack in which an attacker inserts temporary errors in cryptographic devices and extracts a secret key by reducing the number of operational round. In this paper, we proposed an improved round reduction method to retrieve master keys by injecting a fault during operation of loop statement in the Triple DES. Using laser fault injection experiment, we also verified that the proposed attack could be applied to a pure microprocessor ATmega 128 chip in which the Triple DES algorithm was implemented. Compared with previous attack method which is required 9 faulty-correct cipher text pairs and some exhaustive searches, the proposed one could extract three 56-bit secret keys with just 5 faulty cipher texts.

A Round Reduction Attack on Triple DES Using Fault Injection (오류 주입을 이용한 Triple DES에 대한 라운드 축소 공격)

  • Choi, Doo-Sik;Oh, Doo-Hwan;Bae, Ki-Seok;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • The Triple Data Encryption Algorithm (Triple DES) is an international standard of block cipher, which composed of two encryption processes and one decryption process of DES to increase security level. In this paper, we proposed a Differential Fault Analysis (DFA) attack to retrieve secret keys using reduction of last round execution for each DES process in the Triple DES by fault injections. From the simulation result for the proposed attack method, we could extract three 56-bit secret keys using exhaustive search attack for $2^{24}$ candidate keys which are refined from about 9 faulty-correct cipher text pairs. Using laser fault injection experiment, we also verified that the proposed DFA attack could be applied to a pure microprocessor ATmega 128 chip in which the Triple DES algorithm was implemented.

A Study on the Triple Module Redundancy ARM processor for the Avionic Embedded System (항공용 임베디드 시스템을 위한 Triple Module Redundancy 구조의 임베디드 하드웨어 신뢰성 평가)

  • Lee, Dong-Woo;Kim, Byeong-Young;Ko, Wan-Jin;Na, Jong-Whoa
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • The design of avionic embedded systems requires high-dependability. In this paper, we studied the dependability of the triple modular redundancy (TMR) hardware for highly reliable aviation embedded system. In order to evaluate the dependability of the base ARM processor and the TMR ARM processor, we developed the simulation model of the reduced ARM and TMR ARM processors and performed the simulation fault injection for the analysis of the dependability of the two targets. In the fault injection experiments, we calculated the error recovery rate of the two the processor models. From the experimental results, we could confirm that the reliability of the TMR ARM processor was greater than the single ARM processor by ten times in some cases.

Evaluation of Anastomotic Strength and in-vitro Degradability with Microvascular Anastomosis Coupler Based on Injection Molding Condition made by Biodegradable Polycaprolactone(PCL) (생체분해성 폴리카프로락톤(PCL) 미세혈관 문합커플러의 사출성형조건에 따른 문합강도 및 in-vitro 분해능 평가)

  • Ahn, Geun-Seon;Han, Gig-Bong;Oh, Seung-Hyun;Park, Jong-Woong;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • The use of mechanical anastomosis coupler instead of sutures has been increasing in microvascular anastomosis surgery. However, non-biodegradable anastomosis coupler has problems such as not only inflammatory reaction but also remaining permanently in operation wound. Therefore, we fabricated biodegradable anastomosis coupler using injection molding process to overcome the limitation of non-biodegradable anastomosis coupler. In various injection molding process conditions, the shrinkage was calculated with different cylinder temperatures and injection molding pressures and anastomotic strength was measured. As a result, changes in shrinkage hole part larger than the pin part. In addition, the shrinkage in the cylinder at higher temperatures increase. However, the higher the injection pressure, shrinkage tends to decrease, respectively. In-vitro degradation behavior of PCL anastomotic coupler evaluated for 12 weeks, water uptake was increased and molecular weight was accompanied by a reduction in mass of the biological degradation and reduction of anastomotic strength was confirmed. However, decreased levels of anastomotic strength enough to exceed the requirements of preclinical surgery, PCL microvascular anastomosis coupler suitable candidate materials that could identify.

Acceleration of Simulated Fault Injection Using a Checkpoint Forwarding Technique

  • Na, Jongwhoa;Lee, Dongwoo
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.605-613
    • /
    • 2017
  • Simulated fault injection (SFI) is widely used to assess the effectiveness of fault tolerance mechanisms in safety-critical embedded systems (SCESs) because of its advantages such as controllability and observability. However, the long test time of SFI due to the large number of test cases and the complex simulation models of modern SCESs has been identified as a limiting factor. We present a method that can accelerate an SFI tool using a checkpoint forwarding (CF) technique. To evaluate the performance of CF-based SFI (CF-SFI), we have developed a CF mechanism using Verilog fault-injection tools and two systems under test (SUT): a single-core-based co-simulation model and a triple modular redundant co-simulation model. Both systems use the Verilog simulation model of the OpenRISC 1200 processor and can execute the embedded benchmarks from MiBench. We investigate the effectiveness of the CF mechanism and evaluate the two SUTs by measuring the test time as well as the failure rates. Compared to the SFI with no CF mechanism, the proposed CF-SFI approach reduces the test time of the two SUTs by 29%-45%.

A Study on the Injection Characteristics of a Piezo Injector for Controlling Accurate Multiple Injection (커먼레일 타입 피에조 인젝터의 정밀 다단분사 제어를 위한 분사특성 연구)

  • Park, Heebum;Kim, Hyungik;Park, Sangki;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.176-181
    • /
    • 2013
  • In this study, injection quantity, rate and spray image of multiple injections which are important design parameters for a piezo type injector have been investigated. Interval of injections and a number of injections in multiple injection strategy has been controlled to verify interaction of each injection. Spray characteristics of multiple injections have been researched through optical process with a high speed camera in a high pressure chamber. In addition, a method of RMS(Root Mean Square) process has been used for comprehending the distribution of injection easily. As a result, in case of piezo type injector, characteristics of injection quantity according to charging voltage and the difference of injection quantity between single and triple injection were confirmed. Also, injection rate for increasing injection duration was confirmed. And spray characteristics of multiple injections were improved; multiple injections were possible in a shorter time interval between each injection. With this study, a possibilities of more accurate multiple injection control would be expected.

Evaluation of Composite Ground Improvement at Structural Foundation Ground by Super Injection Grouing (SIG공법에 의한 구조물기초지반에서의 복합지반개량 평가)

  • 김종국;손형호;이호관;성기광
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.347-354
    • /
    • 2002
  • In this paper, when structures are constructed in the soft ground with poor bearing capacity at Incheon International Airport(railroad area), as for the grouting columns built In soft ground by high pressure jet grouting with Triple tube rod(super injection grouting), the effects on reinforcement and bearing capacity of ground are investigated. A unconfined compressive strength tests has been performed on the specimens sampled from the grouting columns and a mass plate bearing test has been performed on a grouting column. The test results show that super injection grouting has a sufficient effect on composite ground improved of foundation ground and reatraint of settlement of structure.

  • PDF

ADP DRY ETCHER TECHNOLOGY (ADP Dry Etcher 장비개발의 현황)

  • Kim, Jeong-Tae
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2008.05a
    • /
    • pp.23-29
    • /
    • 2008
  • - High Density Plasma Source-CCP-Dual/Triple, RF Frequency Control - Radical/Flux Analysis - Low Pressure Process - Chamber Design (Process gap/Wall gap) - Chamber Temp. Control. - ESC Dielectric Materials - Uniform Gas Injection

  • PDF

A Key Recovery Attack on HMAC using Fault Injection Attack (오류 주입 공격을 이용한 HMAC에 대한 키 복구 공격)

  • Jeong, Ki-Tae;Lee, Yu-Seop;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.27-33
    • /
    • 2011
  • At FDTC'05 and CISC-W'10, the authors showed that if they decrease the number of rounds of AES and Triple-DES by using the fault injections, it is possible to recover the secret key of the target algorithms, respectively. In this paper, we propose a key recovery attack on HMAC by using the main idea of these attacks. This attack is applicable to HMAC based on MD-family hash functions and can recover the secret key with the negligible computational complexity. Particularly, the attack result on HMAC-SHA-2 is the first known key recovery attack result on this algorithm.