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Acceleration of Simulated Fault Injection Using

a Checkpoint Forwarding Technique

Simulated fault injection (SFI) is widely used to
assess the effectiveness of fault tolerance mechanisms
in safety-critical embedded systems (SCESs) because of
its advantages such as controllability and
observability. However, the long test time of SFI due to
the large number of test cases and the complex
simulation models of modern SCESs has been
identified as a limiting factor. We present a method
that can accelerate an SFI tool using a checkpoint
forwarding (CF) technique. To evaluate the
performance of CF-based SFI (CF-SFI), we have
developed a CF mechanism using Verilog fault-
injection tools and two systems under test (SUT): a
single-core-based co-simulation model and a triple
modular redundant co-simulation model. Both systems
use the Verilog simulation model of the OpenRISC
1200 processor and can execute the embedded
benchmarks from MiBench. We investigate the
effectiveness of the CF mechanism and evaluate the
two SUTs by measuring the test time as well as the
failure rates. Compared to the SFI with no CF
mechanism, the proposed CF-SFI approach reduces
the test time of the two SUTs by 29%—45%.

Keywords: Simulated fault injection, Simulation
acceleration, Checkpoint and forwarding, Triple
modular redundant.

Manuscript received Mar. 4, 2016; revised Apr. 13, 2017; accepted Apr. 24,
2017.

Jongwhoa Na (corresponding author, jwna@hau.ac.kr) is with the Department of
Electronics, Korea Aerospace University, Goyang, Rep. of Korea.

Dongwoo Lee (dongwoo81@gmail.com) is with the Avionics Research Institute
of Korea Aerospace University, Goyang, Rep. of Korea.

This is an Open Access article distributed under the term of Korea Open
Government License (KOGL) Type 4: Source Indication + Commercial Use
Prohibition + Change Prohibition (http://www.kogl.or.kr/news/dataView.do?data
1dx=97).

https://doi.org/10.4218/etrij.17.0116.0151

©2017 ETRI

Jongwhoa Na and Dongwoo Lee

I. Introduction

Because of the recent developments in convergence
technologies (CTs), consumers can now enjoy various
convenient functions; however, these CTs can also incur
various types of unexpected accidents such as sudden
unintended automobile accelerations, adverse events of
robotic surgical systems, and drone accidents [1]-[4].
Thus, safety has become one of the key parameters in the
design of safety-critical embedded systems (SCESs). In
this regard, we must identify the various types of faults
that may threaten the safety of SCESs [5]. From a
technology perspective, the designers of SCESs should
deal with soft errors when they have to use complex VLSI
parts fabricated with a 32-nm technology process node
[6]. Studies have shown that environmental issues such
as cosmic and terrestrial radiations electromagnetic
interference, and temperature may cause single-event
effects and soft errors in varying degrees, depending on
various conditions [7], [8]. One way of handling these
faults and failures is to employ an optimal fault tolerance
mechanism (FTM) during the development of the SCESs
[9], [10]. Since the requirements of functionality and
dependability of modern SCESs are increasingly
complicated, it is desirable to evaluate both the
functionality and the safety features of the FTM in SCESs
in the early stages of the development lifecycle [11], [12].

Simulated fault injection (SFI) can be useful for the
analysis of the FTM in the early stages of the development
lifecycle, but its slow execution speed has limited its
widespread use because of the large and complex test
space [13]-[15]. To reduce the test time of SFI, one group
of researchers developed various types of pruning
techniques to reduce the fault space [16], [17]. A recent
fault-space pruning technique using a genetic algorithm
reduced the fault space of a target embedded system from
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1.46x107 to 1.99x 10° [18], [19]. Although this technique
improves the performance of the fault-space pruning
technique, the test times of SFI are still significant for any
nontrivial modern SCES application; as a result, we need
to investigate different approaches for reducing the test
time, such as accelerating the SFI tool.

In this paper, we present a method that can accelerate
SFI experiments using a checkpoint forwarding (CF)
technique. Although the checkpoint technique is a popular
fault-tolerant mechanism for recovery mechanisms, it is
also an effective mechanism for reducing the simulation
time by accelerating the SFI analysis [9], [10]. In addition,
we integrate the CF mechanism with the SFI using a
commercial Verilog simulator to show how CF-based SFI
(CF-SFI) can reduce the fault-injection simulation time
and provide more detailed insights than those of system-
level analysis. In SFI, the simulator executes the
instructions of the simulation target model as scheduled.
The unique role of SFI is to inject faults and record the
effects of their propagation in the system. This implies that
we know the simulation states of the SFI before the time
of fault injection. Thus, instead of executing the
simulation instructions one by one, we can jump into the
simulation state for the fault injection process. The impact
of this acceleration can be significant if the target is
complex, which means that the simulation time is long, or
if the number of faults is too large for accurate analysis of
the reliability of the target.

From our experience with SFI, when we performed
fault-injection campaigns with a large number of faults
and various injection locations, times, and complex co-
simulation targets, we found that some parts of the SFI
process were redundant [20], [21]. If we can remove the
redundant process in the SFI campaign, we may be able to
accelerate the test time of the SFI. This requires
constructing the checkpoints and a snapshot image file of
the repeating states, which can be built during the golden-
run stages of the SFI. During the injection campaign, if we
can identify the repeating processes, we may be able to
advance the state of the simulation to the predetermined
checkpoints so that we can save some SFI execution time.

To evaluate the performance of the CF-SFI, we
developed a CF mechanism using Verilog Procedural
Interface (VPI)-based fault injection tools [22]. For the co-
simulation target, we built two systems under test (SUT):
a single-core-based co-simulation model and a triple
modular redundant (TMR) processor-based co-simulation
model. Both models used the Verilog simulation model of
the OpenRISC 1200 processor and could execute the
embedded benchmarks from MiBench [19], [23]. We
investigated the effectiveness of the CF mechanism by
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performing both an SFI and a CF-SFI for the two SUTs.
When we compared the result with the native SFI without
the CF mechanism, we found that we could reduce the test
time of the two co-simulation models with the CF-SIF
mechanism by 29% and 45%, respectively.

The rest of this paper is organized as follows. In
Section II, we present the techniques for accelerating the
SFIs. In Section III, we explain the CF mechanism
implemented with the NC-Verilog simulator from
Cadence. In Section IV, we discuss the experimental
results of the SFIs on the two types of co-simulation
model to analyze the performance improvement due to the
CF scheme. Finally, in Section V, we conclude the paper.

[I. Overview of the Acceleration of the Fault
Injection Techniques

Using SFI, we can evaluate the reliability of the fault
tolerance mechanism of the target embedded system and
find the vulnerability of the system in the early stage of
the development process [13]. However, the slow
simulation speed of SFI poses a problem because of
the large number of test cases and the complexity of
the simulation models. In the literature, a single
fault-injection test of the AMD Bulldozer processor
simulation model took 57 min [24]. Since the number of
test cases of the statistical failure rate analysis of modern
embedded systems exceeds 10,000, the test time becomes
prohibitive [24].

To reduce the simulation time of the SFI, we
investigated the works of two groups of researchers. One
group tried to reduce the fault space [16], [17]. Including
the definition/use analysis technique, various pruning
algorithms to reduce the fault space were proposed [25]-
[29]. To reduce the fault space further while improving the
accuracy at the same time, some researchers introduced
heuristic pruning techniques [30]-[32]. Recently, a fault-
space pruning technique augmented with a genetic
algorithm was proposed to reduce the fault space [18].
Although this pruning technique can reduce the fault
space, it requires static/dynamic analysis, which may limit
its applicability [30].

The second group investigated tool acceleration to
reduce the simulation time, wherein the tool identifies and
removes unnecessary or redundant operations of the SFI
[20], [21]. One such approach is to use an efficient SFI
management strategy, which uses a CF mechanism.
Although the checkpoint-and-rollback technique is a well-
known fault-tolerant mechanism, it is also an effective
mechanism that can advance the state of a system to save
some execution time.
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In general, most of the fault injection experiments
involve the use of a large number of identical simulation
models with thousands of different fault models. When
observing the internal process of fault injection
simulations, one may find that some parts of the injection
simulation are repeatedly re-executed in the simulations of
different fault models. On the basis of these observations,
researchers proposed using the CF technique to accelerate
the execution time.

In [27], a checkpoint mechanism for SFI was
introduced, but details about the experiments were not
reported. In [33], a checkpoint algorithm for fault injection
was proposed for two fault injection implementations: one
is modified library error injection (MODLIB) and the
other is PLI fault injection (PLInject), which is a statistical
fault injection technique but whose simulation results are
reported without actually injecting faults. In addition, the
CF mechanism was studied to accelerate the execution of
virtual systems and of the application software in
distributed OS environments as well [34], [35]. Recent
studies on checkpoint mechanism were targeted at
operating-system level or system level and therefore are
not applicable to the register transfer level (RTL) or gate-
level fault-failure analysis. We summarize the acceleration
tools for fault injection and their performance
improvement according to the level of the target model in
Table 1.

In this paper, we explain the practical implementation of
the CF mechanism with a commercial Verilog simulator to
show how the CF-SFI can reduce the test time and
minimize the overhead of the CF mechanism. Note that
Verilog simulators support checkpoint commands, which
can be used for Verilog simulation forwarding purposes.
As will be explained in the next section, we implemented
the CF-SFI using the UST (User-defined System Task)
service of the Verilog simulator. Since the UST function
cannot manipulate the critical or exclusive system
variables of the Verilog simulator, such as the simulator

Table 1. Comparison of the simulation acceleration tools.

WA Tool ey Target Improvement
level method & prov
RTL/Gate Our Checkpoint
level Research SFI ORI200RTL|  ~1.8 x
Rel 30 S V9 2-6
Architecture ° ;/zer 307 Fault parc -
level mart Prunin i
Injector [32] g | SimpleScalar 66 x
Sf“ein GemFI [36] Gems 645 x
cve Checkpoint
(DMTCP) |  Virtual
OS level CFI [34] Machine 8 x
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time, we excluded the use of the checkpoint commands of
the simulator for the CF-SFI.

III. Checkpoint-Forwarding-Based Simulated Fault
Injection

The CF-SFI technique reduces the simulation time by
advancing the simulation clock cycles to the checkpoint
by loading a snapshot image file of the corresponding
simulation state. Although the forwarding method can
reduce the simulation time, it also incurs overheads such
as the snapshot image loading time, which is due to the
slow disk I/O time. In Section IIl.1, we explain the
implementation of the CF SFI using the VPI of
the commercial Verilog simulator. Then, in Section II1.2,
we present a CF management strategy for minimizing the
overhead and maximizing the efficiency.

1. Implementation of the Checkpoint Forwarding
Function

We developed the checkpoint forwarding (CF)
function using the user system task (UST) service of the
Verilog procedure interface (VPI), which is explained
in the IEEE 1364 programming language interface
standard [22]. We developed three UST functions: 1)
$checkpoint-create UST for creating a snapshot image

( Start golden run simulation )

{

Initialize checkpoint interval
(checkpoint interval time 7¢)

v

| Set simulation time 7= 0 |

{

Process evaluation/update
Verilog simulation cycle r++

—

Yes

Call checkpoint-create UST
(build snapshot file at 7c)

Te=Tc+Tc
(move to the next checkpoint)

A4

Simulation
end time?

( End golden run simulation )

Fig. 1. Flowchart of the golden-run simulation.
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( Start CF fault injection )

Initialize fault configuration
Fault type (Fr)

Fault time (7F)

Fault duration (Fb)

Fault location (F1)

Call checkpoint-forwarding UST
(T, Tc)
Load simulation snapshot file at 7c

l

| Set simulation time 7 = T¢ |

'
—|

Run original fault simulation #++ |

l Yes

Assert fault model | Disable fault type (FL) |
(Fr, Fv, Fb) |

C End CF fault injection )

Fig. 2. Flowchart of the checkpoint forwarding fault injection
simulation.

file, 2) $checkpoint-forwarding UST for forwarding to
the checkpoint, and 3) $fault-injection UST for injecting
faults into the simulation model. We explain the
function of these three UST in Table 2.

We now explain the golden-run simulation (Fig. 1) and
the fault injection simulation (Fig. 2) using the checkpoint
forwarding mechanism. Firstly, during the golden-run
simulation, we call $checkpoint-create UST to create the
checkpoint snapshot file of the related state variables of
the system at the checkpoints as follows:

Step 1. Initialize the checkpoint interval (7¢) and the
start of the golden-run simulation.

Step 2. At the selected checkpoint time, call the
checkpoint-create callback functions to build the snapshot
file.

Step 3. Resume the golden-run simulation and update
the simulator time.

Step 4. Repeat steps 2 and 3 until the end of the Verilog
simulation.

This process of creating the checkpoint snapshot image files
at each of the checkpoints continues until it reaches the final
checkpoint in the golden-run simulation as illustrated below.

After the golden-run simulation, we performed the fault
injection simulation using the fault models with various
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Table 2. Summary of the user system task.

User system task

Name Input/output Function
- Identify simulation objects
Input: (module, reg, net) of target
$checkpoint- | Checkpoint interval | Verilog model
create Output: - Calculate checkpoint time
Snapshot files using checkpoint interval
- Build snapshot files
- Identify simulation objects
Inputs: ﬁlf Otg:fet Verilog simulation
$checkpoint- | Snapshot file L
. e - Calculate forwarding time
forwarding | Fault injection time .
. - Update simulator state
Checkpoint interval . .
variables using the
corresponding snapshot file
- Process original Verilog sim.
Inputs: . RO
. - If (simulation time = fault
Fault model (time, .
. time) then
$fault- type, location, . .
L . {replace faulty location with
injection | duration)
Output: fault type
Fault injection VCD hold fault type during fault
duration}

fault attributes. During the fault injection simulation, the
Verilog simulator calls the $checkpoint-forwarding UST
function as follows:

Step 1. Before the start of the simulation, the simulator
checks for the fault inject time.

Step 2. It searches for the nearest checkpoints just
before the injection time.

Step 3. The snapshot file of the selected checkpoint is
loaded to forward the simulation time.

After loading the snapshot file, the simulator restarts the
normal simulation. When the simulator reaches the fault
injection time, it calls $fault-injection UST to inject the
fault into the simulation target model. The $fault-injection
UST function performs the fault injection operation as
follows:

Step 1. During the evaluation phase of the Verilog
simulator, it identifies the attributes of the fault model.

Step 2. During the update phase of the Verilog
simulator, it modifies the original value of the target
variable into a fault value.

After the $fault-injection UST function executes, the
simulator resumes the simulation. In particular, if the
fault model is a transient fault model and it passes the
fault holding time, then it restores the original value
of the fault variable. Using the parameters in Table 3,
we can summarize the fault injection procedure as
follows.
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Table 3. Summary of the variables for checkpoint forwarding.

Symbol Meaning
Ny Total m.lmber of clock cycles in a fault injection
simulation

Nc Number of clock cycles in a checkpoint interval
To Unit clock cycle time

Tc Checkpoint interval time

Tr Fault injection time

T Snapshot file loading time

Tsc Simulation time before the selected checkpoint
Tac Simulation time after the selected checkpoint

2. Optimization of the CF Technique
A. Conditions for the Checkpoint Trigger

Using the checkpoint and forwarding mechanism during
SFI, we can reduce the simulation time before checkpoint
(Tgc), which is the time from the starting point to the
selected checkpoint as shown in Fig. 3. However, this
introduces an overhead time that is the snapshot file
loading time (77). This implies that the exploitation of the
performance improvement of the CF-SFI is only possible
when the snapshot loading time (71 ) is smaller than the
forwarded simulation time (7gc). Thus, we may set
T1. < Tgc as a triggering condition of the CF mechanism in
SFL

For the operation of the CF mechanism, we build a
snapshot image at every checkpoint interval during the
golden-run simulation stage. We can record the average
loading time of the snapshot files (71) at every checkpoint.
After the golden-run simulation, we perform the fault
injection simulation to calculate T using the performance
parameters from Table 3. From Fig. 3, for a given fault
injection time (7%), the CF mechanism forwards the
simulation time from the initial point to the nearest
checkpoint, which is the floor function of L%J, where T¢ is
the number of clock cycles for a checkpoint interval. Thus,
Tgc can be expressed in time units as follows:

Simulation time Simulation time
before checkpoint (7c) after checkpoint (7ac)
Vg \

> »
Hal Lt »

iUnit cycle i Fault injection
L (To) time (7%) ]

Simulation  Checkpoint Snapshot file Simulation
starts interval (Nc) loading time (71) ends

Fig. 3. Design parameters of the checkpoint forwarding (CF)
mechanism.
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T
Tpc = L‘FJ - Nc - Tp. (1)
c

Substituting Tgc into the triggering condition, we find
the following condition for the activation of the CF
mechanism:

TL<LEJ -Nc¢ - Tp. (2)
Tc

We can exploit the advantages of the CF-SFI if this
inequality is satisfied; otherwise, we disable the CF
mechanism and perform the baseline SFI (without the CF
mechanism).

For a given injection simulation, we can calculate the
checkpoint interval 7¢ and the average clock cycle time
To. Moreover, we can find the fault injection time T7g
before the beginning of each fault injection simulation.
Thus, at the starting time of each CF-SFI execution,
we can calculate the simulation time before the
checkpoint T and decide whether or not to use the CF
mechanism.

B. Assessment of the Checkpoint Overhead

In this subsection, we evaluate the relationship between
the execution time of the fault injection simulation without
the CF mechanism (7gr) and the time of the simulation
with the CF mechanism (7¢f). In Fig. 4, the baseline
simulation time (7gr) is the sum of the simulation time
before the selected checkpoint (7gc) and the simulation
time after the checkpoint under the control of the CF
mechanism (7'ac):

Ter = Tec + Tac. (3)

Moreover, the simulation runtime of the CF function
(Tcr) is the sum of the snapshot loading time (71) and the
actual simulation time after the checkpoint (Txc):

Tcr = TL + Tac. 4)

From Fig. 4, for brevity, we define the crossing point of
TsL and Tcr as the checkpoint forwarding tipping point
(CFTP). With the CFTP as the center, we can divide the
graph into an overhead area (left region) and a time-saved
area (right region). In the blue-colored region, the amount
of time saved by the CF mechanism can be formulated as
follows: T

Tgr — Tcp = Tpc — T = LT_ZJ “Nc- To—TL>0. (5)

By comparing the two graphs in Fig. 4, we can see that
the time savings of the CF mechanism increase as the

http://etrij.etri.re.kr
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Saved time

Tor i Overhead time

s I_L Tor — Tcr = Toe — T
TsL,

Y ) TaL

Checkpoint | I L 3 3
forwarding | i TL%
ippi i | H ) 4
tipping point [ -
i

(CFTP)

ToL = Tc + Tac

Execution time

0 Nc 2Nc  3Nc I
T,

Tr
{FCJ Fault injection clock cycle

Fig. 4. Tcr represents the simulation time of fault injection with
the CF mechanism, whereas Tg; represents the normal
simulation time. The checkpoint forwarding tipping point
(CFTP) acts as a reference point between the overhead
region and the accelerated region for the CF mechanism
in the simulated fault injection (CF-SFI).

injection time 7f increases or the snapshot file loading
time 77 decreases.

IV. Checkpoint Forwarding Simulation Results

To evaluate the performance of the CF-SFI, we
designed the CF-SFI using the NC-Verilog simulator from
Cadence. Moreover, we built two co-simulation models, a
single-core-based hardware one and a TMR-based one,
both of which were based on the Verilog simulation model
of the OpenRISC 1200 processor (Fig. 5) and the fast
Fourier transform (FFT) software from Mibench
embedded benchmark suites [19], [23]. The OpenRISC
ORI12K processors used 5-stage pipelines, and supports
virtual memory and DSP. We performed the CF-SFI
experiments on a Linux server with a 2.33-GHz Intel
Xeon E5345 processor.

1. Checkpoint Forwarding Simulated Fault Injection

As a first step, we performed a golden-run simulation to
build the snapshot file at the checkpoint intervals and to
find the value of the key parameters of the CF mechanism
for the given fault injection campaign. During the
golden fault-injection simulation run using the single-core
co-simulation model, we measured the simulation clock
cycles to be 705,000. Thus, assuming that a single clock
cycle of the Verilog simulator was 20 ns, the baseline
simulation time for the co-simulation model would be
14.1 ms. Executing this Verilog simulation on the Linux
server, we measured the average value of 100 physical
simulation times to be 10.24 s.
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IM(MU): instruction memory (management unit)
IC: instruction cache

DM(MU): data memory (management unit)
DC: data cache

IF: instruction fetch

PM: power management

PIC: programmable interrupt controller
LSU: load store unit

MAC: multiply accumulate unit

ALU: arithmetic logic unit

SPRS: special purpose registers

Fig. 5. OpenRISC 1200 Architecture.

In the second phase, using these checkpoint snapshot
files from the golden-run simulation, we performed the
CF-SFI with the baseline co-simulation models to measure
the performance of the CF mechanism.

For the fault model, we selected single transient stuck-
at-1 faults since the objective of this study is to find the
effectiveness of the checkpoint and forwarding
mechanism in the fault injection campaign. Also, note that
the stuck-at-1 fault model is more crucial for the
simulation targets including processors because the data
path in a processor uses more 0s than 1s [20].

We injected 100 random transient stuck-at-1 faults,
which is a sufficiently large number of faults to measure
the average simulation time of the model with the CF-SFI.
In Table 4, we summarize the size and number of
checkpoint snapshot files for four checkpoint periods: 0.5
ms, 1.0 ms, 1.5 ms, and 2.0 ms. For the baseline co-
simulation model, we compared the execution time of each
CF-SFI with that of the SFI without the CF mechanism
and found that we could improve the CF mechanism
runtime by 26%-29% over the baseline simulation. From
the table, we can see that, as the checkpoint interval
increases, the number and size of the snapshot files
increase and, thus, the time saved by the CF-SFI decreases.
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Table 4. Simulation parameters for the baseline injection and
checkpoint forwarding injection.

Improvements
SFI  |Checkpoint| T\umber [SnapshotjAverage| oo g
s | ) of size |runtime over
snapshots| (MB) | () |, cline SFI (%)
Baseline] NA | NA | 1053 N/A
SFI
0.5 28 | 1064 | 7.44 29.3
CF 1.0 14 532 | 7.55 28.3
SFI 1.5 9 342 | 771 26.8
2.0 7 266 | 7.78 26.1

2. Simulated Fault Injection Using CFTP

We now compare the simulation runtime of the CF
mechanism with the CFTP to that of the SFI without the
CF mechanism and the CF-SFI without CFTP.

Firstly, we calculate the CFTP of the single-core and
TMR co-simulation models. From (2), to calculate the
CFTP, we must calculate 7, which requires the physical
time value of the unit clock cycle, which was set to 20 ns
in the Verilog simulation. We can calculate 7; in two
steps: 1) measure the time to execute a block of code and
2) divide it by the number of clock cycles in the block.

In our experiments, the average physical execution time
of the CF SFI for 500 clock cycles was measured as
6.6688 ms. Therefore, the physical time of the clock
cycles Ty, was 6.6688/500=0.013 ms/cycle. During the
same simulations, we measured the average snapshot file
loading time 71 as 1,120 ms or 86,153 clock cycles. By
substituting these values into (5), we can determine the
CFTP; we summarize its value for the four checkpoint
intervals in Table 5.

For the CF-SFI of the single-core and TMR co-
simulation models with the single transient stuck-at-1
fault model, we measured Ty, T, and T and calculated
the CFTP, as given in Table 6. From the table, we can
see that the execution time of the CF-SFI over the
baseline SFI was improved by 28% for the single-core
co-simulation model and 42% for the TMR model,
respectively. This shows that the CF mechanism can be
more effective as the size of the co-simulation model
increases. Note that, in our experiments, we employed
rather simple co-simulation models that ran for 705,000
simulation clock cycles because our purpose was to
evaluate the effectiveness of the CF mechanism in the
context of a simulated fault injection campaign. Thus, if
we extend the complexity of our simulation target
models, we can expect the impact of the CF mechanism

611

Table 5. Calculation of CFTP using (5) for 7, = 0.0133 ms and
Ty = 1,120 ms at four checkpoint intervals of 0.5 ms,
1.0 ms, 1.5 ms, and 2.0 ms.

. ms 0.5 1.0 1.5 2.0
Checkpoint o
Interval (N¢) oc 25,000 | 50,000 | 75,000 [ 100,000
cycles
1
T 336 | 168 | 112 | 084
It = CFTP 4 2 ) {
C

Table 6. Comparison of the native SFI, CF-SFI without CFTP,
and CF-SFI with CFTP (CFTP* in checkpoint interval

number).
Snapshot
. o . SFI | file load Simulation Improvements
simulation . e CFTP* —_—— over
model Rl baseline (%)
Ty (ms)
baseline| N/A N/A 10.53 N/A
Single-core
OR1200 CF 1120 N/A 7.55 28.3
CFTP 2 7.45 29.2
baseline| N/A N/A 23.09 N/A
TMR CF N/A | 1338 42.1
OR1200 3,483
CFTP 3 12.54 45.7

to increase accordingly. In the case of the CFTP, the
performance increase of the single-core model only
showed a 1% difference, whereas that of the TMR model
showed a 4% improvement. As in the case of the CF
mechanism, we can expect the performance of the CFTP
to be fully exploited if the complexity of the simulation
models is greater.

V. Conclusions

We presented a method for accelerating simulated fault
injection experiments by utilizing the checkpoints and the
checkpoint forwarding (CF) technique. To evaluate the
performance of the CF-based simulated fault injection
(CF-SFI) technique, we implemented the CF-SFI using the
User-defined System Task (UST) service of the NC-
Verilog simulator from Cadence. Moreover,
implemented two co-simulation models, a single-core-
based hardware one and a TMR-based one, both of which
consisted of the Verilog simulation model of the
OpenRISC 1200 processor, the FFT software from
MiBench, and a transient stuck-at-1 fault model. From the
simulation results, we confirmed that CF-SFI can improve
the simulation time by 45% when compared with the

w¢e
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baseline SFI without the CF mechanism. If we would
integrate the advanced pruning algorithm with the CF
mechanism in the simulated fault injection, we might be
able to further reduce the test time of a simulated fault
injection campaign.
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