• Title/Summary/Keyword: Trigonometric Analysis

Search Result 130, Processing Time 0.026 seconds

Dynamic response of post-tensioned rocking wall-moment frames under near-fault ground excitation

  • Feng, Ruoyu;Chen, Ying;Cui, Guozhi
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • The dynamic responses of a rocking wall-moment frame (RWMF) with a post-tensioned cable are investigated. The nonlinear equations of motions are developed, which can be categorized as a single-degree-of-freedom (SDOF) model. The model is validated through comparison of the rocking response of the rigid rocking wall (RRW) and displacement of the moment frame (MF) against that obtained from Finite Element analysis when subjected ground motion excitation. A comprehensive parametric analysis is carried out to determine the seismic performance factors of the RWMF systems under near-fault trigonometric pulse excitation. The horizontal displacement of the RWMF system is compared with that of MF structures without RRW, revealing the damping effect of the RRW. Frame displacement spectra excited by trigonometric pulses and recorded earthquake ground motions are constructed. The effects of pulse type, mass ratio, frame stiffness, and wall slenderness variations on the displacement spectra are presented. The paper shows that the coupling with a RRW has mixed results on suppressing the maximum displacement response of the frame.

Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory

  • Mouffoki, Abderrahmane;Bedia, E.A. Adda;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.369-383
    • /
    • 2017
  • In this work, the effects of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is studied by proposing a novel simple trigonometric shear deformation theory. The main advantage of this theory is that, in addition to including the shear deformation influence, the displacement field is modeled with only 2 unknowns as the case of the classical beam theory (CBT) and which is even less than the Timoshenko beam theory (TBT). Three types of environmental condition namely uniform, linear, and sinusoidal hygrothermal loading are studied. Material properties of FG beams are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from Hamilton's principle. Numerical examples are presented to show the validity and accuracy of present shear deformation theories. The effects of hygro-thermal environments, power law index, nonlocality and elastic foundation on the free vibration responses of FG beams under hygro-thermal effect are investigated.

Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory

  • Bekkaye, Tahar Hacen Lamine;Fahsi, Bouazza;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.439-450
    • /
    • 2020
  • In this research, bending and buckling analyses of porous functionally graded (FG) plate under mechanical load are presented. The properties of the FG plate vary gradually across the thickness according to power-law and exponential functions. The material imperfection is considered to vary depending to a logarithmic function. The plate is modeled by a refined trigonometric shear deformation theory where the use of the shear correction factor is unnecessary. The governing equations of the FG plate are derived via virtual work principle and resolved via Navier solutions. The accuracy of the present model is checked by comparing the obtained results with those found in the literature. The various effects influencing the stresses, displacements and critical buckling loads of the plate are also examined and discussed in detail.

Analysis of the ability to interpret and draw a graph of the function to high school students (고등학생의 함수의 모양 그리기와 해석하는 능력 분석)

  • An, Jong-Su
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.2
    • /
    • pp.299-316
    • /
    • 2012
  • In this paper, we examine high school in order to know their ability for understanding about fundamental functions, such as polynomial, trigonometric, logarithm and exponential functions which have learned from high school. The result of this study shows as follows. More than half students are not able to draw shape of given functions, except polynomial. More students do not fully understand about function properties such as domain, codomain, range, maximum and minimum value.

  • PDF

Analysis of Noise Characteristic of Uneven Pitch Regenerative Blower (부등피치를 적용한 재생 블로워의 소음특성 연구)

  • Lee, Kyoung-Yong;Jung, Uk-Hee;Kim, Jin-Hyuk;Kim, Cheol-Ho;Choi, Young-Seok;Ma, Jae-Hyun;Jeong, Kyung-Ho;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.71-75
    • /
    • 2015
  • The flow and noise characteristics of the regenerative blower are evaluated experimentally. To decrease the noise of regenerative blower at a high frequency, we arrange the impeller vanes unevenly by special formula. The uneven pitch formular consists of the combination of trigonometric function. The magnitude of degree between each vanes and the control parameters of trigonometric functions are main design parameters for the uneven pitch. The flow characteristics of even and uneven impellers are tested by the fan tester and compared each results. The efficiency of a blower is calculated by the axial power using a dynamo system. The noise property of designed impeller is measured in an anechoic room. In this study, we certify that the uneven pitch impeller is effective in the noise reduction at a high frequency.

Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory

  • Bourada, Fouad;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Azzaz, Abdelghani;Zinata, Amina;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • This article present the free vibration analysis of simply supported perfect and imperfect (porous) FG beams using a high order trigonometric deformation theory. It is assumed that the material properties of the porous beam vary across the thickness. Unlike other theories, the number of unknown is only three. This theory has a parabolic shear deformation distribution across the thickness. So it is useless to use the shear correction factors. The Hamilton's principle will be used herein to determine the equations of motion. Since, the beams are simply supported the Navier's procedure will be retained. To show the precision of this model, several comparisons have been made between the present results and those of existing theories in the literature.

Free vibration of functionally graded carbon nanotubes reinforced composite nanobeams

  • Miloud Ladmek;Abdelkader Belkacem;Ahmed Amine Daikh;Aicha Bessaim;Aman Garg;Mohammed Sid Ahmed Houari;Mohamed-Ouejdi Belarbi;Abdelhak Ouldyerou
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.161-177
    • /
    • 2023
  • This paper proposes an analytical method to investigate the free vibration behaviour of new functionally graded (FG) carbon nanotubes reinforced composite beams based on a higher-order shear deformation theory. Cosine functions represent the material gradation and material properties via the thickness. The kinematic relations of the beam are proposed according to trigonometric functions. The equilibrium equations are obtained using the virtual work principle and solved using Navier's method. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the vibration response of FG nanobeams to nonlocal length scale, strain gradient microstructure-scale, material distribution and geometry.

A Didactical Analysis on Radian (라디안에 대한 교수학적 분석)

  • Nam, Jin-Young;Yim, Jae-Hoon
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.2
    • /
    • pp.263-281
    • /
    • 2008
  • This study is to provide a base for discussions on teaching and teaming of radian through a theoretical analysis of it. Radian possesses two-fold comprehensive properties of measurement as a magnitude and a pure number. As a magnitude of an angle, it has some theoretical advantages in mathematics and in physics, in spite of its non-superiority to other angular measures in practical sense. As a pure number, it has some advantages in that it simplifies theoretical developments of trigonometric functions and justifies omitting the unit in the calculations and final expressions in physics. Radian should be taught and learnt with an appreciation of the advantages of the two-fold properties. Activities to measure angles from various viewpoints may be helpful for this. Students' awareness of the advantages of radian needs to be stimulated and deepened repeatedly as related content appears.

  • PDF

Nonlinear Vibration Analysis of Rotating Composite Plates Based on a Refined Plate Theory (개선된 판이론을 이용한 회전하는 복합재료 적층판의 비선형 진동해석)

  • 나형진;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.173-176
    • /
    • 1997
  • A refined plate theory including the effects of transverse shearing is used to predict the free vibration frequencies, mode shapes and stress distributions in spinning laminated composite plates. In this theory, the displacements are expressed by trigonometric series representation through the thickness. In the series for the displacements only the first few terms are retained. The model is validated by comparing the results for isotropic plates with those available in the literature.

  • PDF

ON THE SUPERSTABILITY FOR THE p-POWER-RADICAL SINE FUNCTIONAL EQUATION

  • Gwang Hui Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.801-812
    • /
    • 2023
  • In this paper, we investigate the superstability for the p-power-radical sine functional equation $$f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=f(x)f(y)$$ from an approximation of the p-power-radical functional equation: $$f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}g(x)h(y),$$ where p is an odd positive integer and f, g, h are complex valued functions. Furthermore, the obtained results are extended to Banach algebras.