• Title/Summary/Keyword: Triboelectric nanogenerators

Search Result 19, Processing Time 0.023 seconds

Recent Trends in Energy Harvesting Technology Using Composite Materials (복합소재를 이용한 에너지 하베스팅 기술 동향)

  • Jung, Jae Hwan;Lee, Dong-Min;Kim, Young Jun;Kim, Sang-Woo
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.110-121
    • /
    • 2019
  • Triboelectric nanogenerators and piezoelectric nanogenerators are a spotlighted energy harvesting method that converts the wasted mechanical energy from the environment into usable electrical energy. In the case of triboelectric nanogenerators, researches have been mainly focused on high permittivity and flexible polymer materials, and in the case of piezoelectric nanogenerators, researches have been focused on ceramic materials exhibiting high polarization characteristics. Recently, many researches have been conducted to improve durability and power in various environments by using composite materials which have flexible properties of polymer, high permittivity, thermal resistance and high polarization properties of ceramics. This article reviews the energy harvesting studies reported about composites materials using ceramics and polymers.

Application to Piezoelectric and Triboelectric Generators of Spongy Structured BaTiO3 Prepared by Sputtering (Sputtering에 의해 제조된 해면 구조 BaTiO3의 압전 및 마찰전기 발전기에의 응용)

  • Seon-A Kim;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.34-43
    • /
    • 2024
  • New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 ㎂ at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 ㎂, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.

Investigation on Behaviors of Triboelectric Nanogenerators Based on Life Supplies according to Kinds of Chemical Bonding (화학 결합 종류에 따른 생활 용품 기반 마찰 발전기 거동 연구)

  • Hwang, Hee Jae;Choi, Dongwhi;Choi, Dukhyun
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.307-313
    • /
    • 2019
  • Triboelectric nanogenerators (TENGs), which are combined effects of triboelectricity and electric induction, is a large-area and low-cost technology that can be applied easily in our life. In this work, we applied life supplies to TENGs and analyzed a type of chemical bonding with the ratio of C-C/C-H/C-O/C=O bonding. As the ratio of C-C bonding increases, the materials can be positively charge. On the other hands, as the ratio of C-H bonding increases, the materials can be negatively charged materials. Based on these behaviors, we got a voltage of 210V, a current of 14.6 ㎂ and a maximum power of 9.8mW. Finally, we could turn on 97 light emitting diodes (LEDs) by using a wrap as a negative material and a magnetic note as a positive material.

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

Triboelectric Nanogenerators for Self-powered Sensors

  • Rubab, Najaf;Kim, Sang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • Self-powered sensors play an important role in everyday life, and they cover a wide range of topics. These sensors are meant to measure the amount of relevant motion and transform the biomechanical activities into electrical signals using triboelectric nanogenerators (TENGs) since they are sensitive to external stimuli such as pressure, temperature, wetness, and motion. The present advancement of TENGs-based self-powered wearable, implantable, and patchable sensors for healthcare monitoring, human body motion, and medication delivery systems was carefully emphasized in this study. The use of TENG technology to generate electrical energy in real-time using self-powered sensors has been the topic of considerable research among various leading scholars. TENGs have been used in a variety of applications, including biomedical and healthcare physical sensors, wearable devices, biomedical, human-machine interface, chemical and environmental monitoring, smart traffic, smart cities, robotics, and fiber and fabric sensors, among others, as efficient mechanical-to-electric energy conversion technologies. In this evaluation, the progress accomplished by TENG in several areas is extensively reviewed. There will be a discussion on the future of self-powered sensors.

Interfacial Material Engineering for Enhancing Triboelectric Nanogenerators

  • Nguyen, Dinh Cong;Choi, Dukhyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.218-227
    • /
    • 2022
  • Triboelectric nanogenerators (TENGs), a new green energy, that have various potential applications, such as energy harvesters and self-powered sensors. The output performance of TENGs has been improving rapidly, and their output power significantly increased since they were first reported owing to improved triboelectrification materials and interfacial material engineering. Because the operation of a TENG is based on contact electrification in which electric charges are exchanged at the interface between two materials, its output can be increased by increasing the contact area and charge density. Material surface modification with microstructures or nanostructures has increased the output performance of TENGs significantly because not only does the sharp micro/nano morphology increases the contact area during friction, but it also increases the charge density. Chemical treatment in which ions or functional groups are added has also been used to improve the performance of TENGS by modifying the work functions, charge densities, and dielectric constants of the triboelectric materials. In addition, ultrahigh output power from TENGs without using new materials or treatments has been obtained in many studies in which special structures were designed to control the current release or to collect the charge current directly. In this review, we discuss physical and chemical treatments, bulk modifications, and interfacial engineering for enhancing TENG performance by improving contact electrification and electrostatic induction.

Fabrication and Characterization of Triboelectric Nanogenerator based on Porous Animal-collagen (다공성 동물성-콜라겐을 이용한 마찰전기 나노발전기 제작 및 특성평가)

  • Shenawar Ali Khan;Sheik Abdur Rahman;Woo Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.179-187
    • /
    • 2023
  • Nanogenerators containing biomaterials are eco-friendly electronic devices in terms of being a non-polluting energy source and biodegradable electronic waste. In particular, the amount of waste will be also reduced if the biomaterial can be extracted from biowaste. In this study, a triboelectric nanogenerator was fabricated using animal collagen present in the skin of a mammal and its characteristion was proformed. The electro-anodic layer of the triboelectric nanogenerator was constructed by forming a collagen film using the spin coating method, and it was confirmed that the film was porous from scanning electron microscopy. The fabricated triboelectric nanogenerator exhibited an open-circuit voltage from 7 V at 3 Hz to 15 V at 5 Hz due to periodic mechanical movement, and a short-circuit current of 3.8 uA at 5 Hz. In conclusion, collagen-containing triboelectric nanogenerators can be power source for low-power operating devices such as sensors and are also expected to be useful for reducing electronic waste.

A Study on the Output Performance of Solid-solid Triboelectric Energy Harvesting Depending on the Surface Morphology and Thickness of AAO (AAO 두께 및 표면 형상에 따른 고체-고체 마찰 대전 기반 에너지 하베스팅 발전 성능에 관한 연구)

  • Kwangseok Lee;Woonbong Hwang
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.224-229
    • /
    • 2023
  • Due to the increasing demand for wearable devices and miniaturization of various electronic devices, the trend of nanofabrication in IT devices is underway. In order to overcome the limitations of battery size and capacity, there has been a lot of research interest in energy harvesting technology, also known as triboelectric nanogenerator. AAO(Anodic Aluminum oxide) coated with fluoride is a structure that includes an anode layer with high properties in the triboelectric series, an dielectric layer that helps transfer the triboelectrically generated charges to the electrode without loss, and the electrode. For these reasons, AAO has been a lot of research on its application to frictional energy harvesting nanogenerators. In this work, we analyzed the correlation of AAO between the surface morphology and thickness of the insulating layer by utilizing aluminum oxide, which is advantageous for the application of triboelectric nanogenerators, and adjusting the thickness of the insulating layer.

Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System (IoT 및 웨어러블 시스템을 위한 멀티 소스 기반 에너지 수확 구조)

  • Park, Hyun-Moon;Kwon, Jin-San;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.225-234
    • /
    • 2019
  • By using the Triboelectric nanogenerators, known as TENG, we can take advantages of high conversion efficiency and continuous power output even with small vibrating energy sources. Nonlinear energy extraction techniques for Triboelectric vibration energy harvesting usually requires synchronized active electronic switches in most electronic interface circuits. This study presents a nonlinear energy harvesting with high energy conversion efficiency to harvest and save energies from human active motions. Moreover, the proposed design can harvest and store energy from sway motions around different directions on a horizontal plane efficiently. Finally, we conducted a comparative analysis of a multi-mode energy storage board developed by a silicon-based piezoelectricity and a transparent TENG cell. As a result, the experiment showed power generation of about 49.2mW/count from theses multi-fully harvesting source with provision of stable energy storages.

Effect on TENG Performance by Phase Control of TiOx Nanoparticles

  • Huynh, Nghia Dinh;Park, Hyun-Woo;Chung, Kwun-Bum;Choi, Dukhyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.365-370
    • /
    • 2018
  • One of the critical parameters to improve the output power for triboelectric nanogenerators (TENGs) is the surface charge density. In this work, we modify the tribo-material of TENG by introducing the $TiO_x$ embedded Polydimethylsiloxane (PDMS) in anatase and rutile phase. The effect of dielectric constant and electronic structure of the $TiO_x$ on the capacitance of TENG and the output power as well are discussed. The surface charge density is increased as the control of the dielectric constant in difference weight percent of $TiO_x$ and PDMS. As the results of that, the 5% $TiO_x$ rutile phase and 7% $TiO_x$ anatase phase embedded PDMS exhibit the highest TENG output. The peak value of voltage/current obtained from $TiO_x$ rutile and anatase phase are ${\sim}180V/8.2{\mu}A$ and $211.6V/8.7{\mu}A$, respectively, at the external force of 5 N and working frequency of 5 Hz, which gives over 12-fold and 15-fold power enhancement compared with the TENG based on the pristine PDMS film. This study provides a better understanding for TENG performance enhancement from the materials view.