Fig. 2. The effect various TiOx NPs embedded PDMS composition in (a)-(b) rutile and (c)-(d) anatase phase as a function of the TENG output voltage and current
Fig. 3. Dielectric constant linearly changes as a function of TiOx NPs embedded PDMS weight ratio from 0% to 30% wt % in rutile and anatase phase
Fig. 4. O-K edge XAS spectra of PDMS layers as a function of the TiOx NPs embedded PDMS by weight ratio
Fig. 1. (a) Experimental design for TiOx NPs embedded PDMS based TENG, (b) XRD analysis of TiOx NPs Anatase and Rutile phase
Table 1. Dielectric constant of different wt% of rutile and anatase TiOx NPs embedded PDMS
References
- Zhu, G., Peng, B., Chen, J., Jing, Q., and Wang, Z.L., "Triboelectric Nanogenerators as a New Energy Technology: From Fundamentals, Devices, to Applications," Nano Energy, Vol. 14, 2015, pp. 126-138. https://doi.org/10.1016/j.nanoen.2014.11.050
- Wang, Z.L., "On Maxwell's Displacement Current for Energy and Sensors: the Origin of Nanogenerators," Materials Today, Vol. 20, No. 2, 2017, pp. 74-82. https://doi.org/10.1016/j.mattod.2016.12.001
- Byun, K.E., Cho, Y., Seol, M., Kim, S., Kim, S.W., Shin, H.J., Park, S., and Hwang, S., "Control of Triboelectrification by Engineering Surface Dipole and Surface Electronic State," ACS Applied Materials & Interfaces, Vol. 8, No. 28, 2016, pp. 18519-18525. https://doi.org/10.1021/acsami.6b02802
- He, X., Guo, H., Yue, X., Gao, J., Xi, Y., and Hu, C., "Improving Energy Conversion Efficiency for Triboelectric Nanogenerator with Capacitor Structure by Maximizing Surface Charge Density," Nanoscale, Vol. 7, No. 5, 2015, pp. 1896-1903. https://doi.org/10.1039/C4NR05512H
- Chen, J., Guo, H., He, X., Liu, G., Xi, Y., Shi, H., and Hu, C., "Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film," ACS Applied Materials & Interfaces, Vol. 8, No. 1, 2015, pp. 736-744. https://doi.org/10.1021/acsami.5b09907
- Dudem, B., Huynh, N.D., Kim, W., Kim, D.H., Hwang, H.J., Choi, D., and Yu, J.S., "Nanopillar-array Architectured PDMS-Based Triboelectric Nanogenerator Integrated with a Windmill Model for Effective Wind Energy Harvesting," Nano Energy, Vol. 42, 2017, pp. 269-281. https://doi.org/10.1016/j.nanoen.2017.10.040
- Lee, K.Y., Chun, J., Lee, J.H., Kim, K.N., Kang, N.R., Kim, J.Y., Kim, M.H., Shin, K.S., Gupta, M.K., Baik, J.M., and Kim, S.W., "Hydrophobic Sponge Structure-based Triboelectric Nanogenerator," Advanced Materials, Vol. 26, No. 29, 2014, pp. 5037-5042. https://doi.org/10.1002/adma.201401184
- Jeong, C.K., Baek, K.M., Niu, S., Nam, T.W., Hur, Y.H., Park, D.Y., Hwang, G.T., Byun, M., Wang, Z.L., Jung, Y.S., and Lee, K.J., "Topographically-designed Triboelectric Nanogenerator via Block Copolymer Self-assembly", Nano Letters, Vol. 14, No. 12, 2014, pp. 7031-7038. https://doi.org/10.1021/nl503402c
- Park, H.W., Huynh, N.D., Kim, W., Lee, C., Nam, Y., Lee, S., Chung, K.B., and Choi, D., "Electron Blocking Layer-based Interfacial Design for Highly-enhanced Triboelectric Nanogenerators," Nano Energy, Vol. 50, 2018, pp. 9-15. https://doi.org/10.1016/j.nanoen.2018.05.024
-
Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., and Lemke, K.J., "Flexible Nanocomposite Generator Made of
$BaTiO_3$ Nanoparticles and Graphitic Carbons," Advanced Materials, Vol. 24, No. 22, 2012, pp. 2999-3004. https://doi.org/10.1002/adma.201200105 - Sun, H., Tian, H., Yang, Y., Xie, D., Zhang, Y.C., Liu, X., Ma, S., Zhao, H.M., and Ren, T.L., "A Novel Flexible Nanogenerator Made of ZnO Nanoparticles and Multiwall Carbon Nanotube," Nanoscale, Vol. 5, No. 13, 2013, pp. 6117-6123. https://doi.org/10.1039/c3nr00866e
- Nguyen, V., and Yang, R., "Effect of Humidity and Pressure on the Triboelectric Nanogenerator," Nano Energy, Vol. 2, No. 5, 2013, pp. 604-608. https://doi.org/10.1016/j.nanoen.2013.07.012
- Lu, C.X., Han, C.B., Gu, G.Q., Chen, J., Yang, Z.W., Jiang, T., He, C., and Wang, Z.L., "Temperature Effect on Performance of Triboelectric Nanogenerator," Advanced Engineering Materials, Vol. 19, No. 12, 2017, p. 1700275. https://doi.org/10.1002/adem.201700275
- Kim, W., Hwang, H.J., Bhatia, D., Lee, Y., Baik, J.M., and Choi, D., "Kinematic Design for High Performance Triboelectric Nanogenerators with Enhanced Working Frequency," Nano Energy, Vol. 21, 2016, pp. 19-25. https://doi.org/10.1016/j.nanoen.2015.12.017
- Bhatia, D., Kim, W., Lee, S., Kim, S.W., and Choi, D., "Tandem Triboelectric Nanogenerators for Optimally Scavenging Mechanical Energy with Broadband Vibration Frequencies," Nano Energy, Vol. 33, 2017, pp. 515-521. https://doi.org/10.1016/j.nanoen.2017.01.059
- Bhatia, D., Lee, J., Hwang, H.J., Baik, J.M., Kim, S., and Choi, D., "Design of Mechanical Frequency Regulator for Predictable Uniform Power from tribOelectric Nanogenerators," Advanced Energy Materials, Vol. 8, No. 15, 2018, p. 1702667. https://doi.org/10.1002/aenm.201702667
- Fan, F.R., Lin, L., Zhu, G., Wu, W., Zhang, R., and Wang, Z.L., "Transparent Triboelectric Nanogenerators and Self-powered Pressure Sensors Based on Micropatterned Plastic Films," Nano Letters, Vol. 12, No. 6, 2012, pp. 3109-3114. https://doi.org/10.1021/nl300988z
- Lee, K.Y., Chun, J., Lee, J.H., Kim, K.N., Kang, N.R., Kim, J.Y., Kim, M.H., Shin, K.S., Gupta, M.K., Baik, J.M., and Kim, S.W., "Hydrophobic Sponge Structure-based Triboelectric Nanogenerator," Advanced Materials, Vol. 26, No. 29, 2014, pp. 5037-5042. https://doi.org/10.1002/adma.201401184
Cited by
- 화학 결합 종류에 따른 생활 용품 기반 마찰 발전기 거동 연구 vol.32, pp.6, 2018, https://doi.org/10.7234/composres.2019.32.6.307