DOI QR코드

DOI QR Code

Recent Trends in Energy Harvesting Technology Using Composite Materials

복합소재를 이용한 에너지 하베스팅 기술 동향

  • Jung, Jae Hwan (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, Dong-Min (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Kim, Young Jun (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Kim, Sang-Woo (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 정재환 (성균관대학교 신소재공학과) ;
  • 이동민 (성균관대학교 신소재공학과) ;
  • 김영준 (성균관대학교 신소재공학과) ;
  • 김상우 (성균관대학교 신소재공학과)
  • Received : 2019.06.03
  • Accepted : 2019.06.10
  • Published : 2019.06.30

Abstract

Triboelectric nanogenerators and piezoelectric nanogenerators are a spotlighted energy harvesting method that converts the wasted mechanical energy from the environment into usable electrical energy. In the case of triboelectric nanogenerators, researches have been mainly focused on high permittivity and flexible polymer materials, and in the case of piezoelectric nanogenerators, researches have been focused on ceramic materials exhibiting high polarization characteristics. Recently, many researches have been conducted to improve durability and power in various environments by using composite materials which have flexible properties of polymer, high permittivity, thermal resistance and high polarization properties of ceramics. This article reviews the energy harvesting studies reported about composites materials using ceramics and polymers.

Keywords

References

  1. H. Ryu, H. J. Yoon and S.-W. Kim, "Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting," Adv. Mater. 1802898 (2019). https://doi.org/10.1002/adma.201802898
  2. R. Hinchet, W. Seung and S.-W. Kim, "Recent progress on flexible triboelectric nanogenerators for selfpowered electronics," ChemSusChem 8 [14] 2327-2344 (2015). https://doi.org/10.1002/cssc.201403481
  3. H.-J. Yoon, H. Ryu and S.-W. Kim, "Sustainable powering triboelectric nanogenerators: Approaches and the path towards efficient use," Nano Energy 51 173-184 (2018). https://doi.org/10.1016/j.nanoen.2018.06.034
  4. Z. L. Wang, J. Chen and L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors," Energy Environ. Sci. 8 [8] 2250-2282 (2015). https://doi.org/10.1039/C5EE01532D
  5. www.figarosensor.com
  6. D. Bhatia, W. Kim, S. Lee, S.-W. Kim and D. Choi, "Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies," Nano Energy 33 515-521 (2017). https://doi.org/10.1016/j.nanoen.2017.01.059
  7. H. J. Choi, J. H. Lee, J. Jun, T. Y. Kim, S.-W. Kim and H. Lee, "High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces," Nano Energy 27 595-601 (2016). https://doi.org/10.1016/j.nanoen.2016.08.014
  8. F. R. Fan, Z. Q. Tian and Z. L. Wang, "Flexible triboelectric generator," Nano Energy 1 [2] 328-334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
  9. S. S. Kwak, H. Kim, W. Seung, J. Kim, R. Hinchet and S.-W. Kim, "Fully stretchable textile triboelectric nanogenerator with knitted fabric structures," ACS nano 11 [11] 10733-10741 (2017). https://doi.org/10.1021/acsnano.7b05203
  10. H. Ryu, J. H. Lee, U. Khan, S. S. Kwak, R. Hinchet and S.-W. Kim, "Sustainable direct current powering a triboelectric nanogenerator via a novel asymmetrical design," Energy Environ. Sci. 11 [8] 2057-2063 (2018). https://doi.org/10.1039/c8ee00188j
  11. M. Seol, S. Kim, Y. Cho, K. E. Byun, H. Kim, J. Kim and S. Park, "Triboelectric Series of 2D Layered Materials," Adv. Mater. 30 [39] 1801210 (2018). https://doi.org/10.1002/adma.201801210
  12. W. D. Callister Jr. and D. G. Rethwisch, "Materials Science and Engineering: An Introduction," Wiley 8 487 (2009).
  13. Z. H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu and Z. L. Wang, "Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified $TiO_2$ nanomaterials," ACS nano 7 [5] 4554-4560 (2013). https://doi.org/10.1021/nn401256w
  14. W. Seung, M. K. Gupta, K. Y. Lee, K. S. Shin, J. H. Lee, T. Y. Kim and S.-W. Kim, "Nanopatterned textile-based wearable triboelectric nanogenerator," ACS nano 9 [4] 3501-3509 (2015). https://doi.org/10.1021/nn507221f
  15. W. Seung, H. J. Yoon, T. Y. Kim, H. Ryu, J. Kim, J. H. Lee and S.-W. Kim, "Boosting power generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties," Adv. Energy Mater. 7 [2] 1600988 (2017). https://doi.org/10.1002/aenm.201600988
  16. J. Kim, J. H. Lee, H. Ryu, J. H. Lee, U. Khan, H. Kim and S.-W. Kim, "High Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P (VDF TrFE) with Controlled Crystallinity and Dipole Alignment," Adv. Funct. Mater. 27 [22] 1700702 (2017). https://doi.org/10.1002/adfm.201700702
  17. S. A. Han, J. Lee, J. Lin, S.-W. Kim and J. H. Kim, "Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials," Nano Energy 57 680-691 (2019) https://doi.org/10.1016/j.nanoen.2018.12.081
  18. T. Y. Kim, S. K. Kim and S.-W. Kim "Application of ferroelectric materials for improving output power of energy harvesters," Nano Convergence 5 [30] (2018)
  19. K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang and K. J. Lee, "Flexible Nanocomposite Generator Made of $BaTiO_3$ Nanoparticles and Graphitic Carbons," Adv. Mater. 24 [22] 2999-3004 (2012). https://doi.org/10.1002/adma.201200105
  20. Y. Kim, K. Y. Lee, S. K. Hwang, C. Park, S.-W. Kim and J. Cho, "Layer-by-Layer Controlled Perovskite Nanocomposite Thin Films for Piezoelectric Nanogenerators," Adv. Funct. Mater. 24 [40] 6262-6269 (2014). https://doi.org/10.1002/adfm.201401599
  21. G. Zhang, Q. Liao, Z. Zhang, Q. Liang, Y. Zhao, X. Zheng and Y. Zhang, "Novel Piezoelectric Paper Based Flexible Nanogenerators Composed of $BaTiO_3$ Nanoparticles and Bacterial Cellulose," Adv. Sci. 3 [2] 1500257 (2016). https://doi.org/10.1002/advs.201500257
  22. J. M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou and Z. L. Wang, "Flexible and Transparent Nanogenerators Based on a Composite of Lead Free $ZnSnO_3$ Triangular Belts," Adv. Mater. 24 [45] 6094-6099 (2012) https://doi.org/10.1002/adma.201202445
  23. K. Y. Lee, D. Kim, J. H. Lee, T. Y. Kim, M. K. Gupta and S.-W. Kim, "Unidirectional High-Power Generation via Stress-Induced Dipole Alignment from $ZnSnO_3$ Nanocubes/Polymer Hybrid Piezoelectric nanogenerator," Adv. Funct. Mater. 24 [14] 2038-2043 (2014) https://doi.org/10.1002/adfm.201302962
  24. E. J. Lee, T. Y. Kim, S.-W. Kim, S. Jeong, Y. Choi and S. Y. Lee "High-performance piezoelectric nanogenerators based on chemically-reinforced composites," Energy Environ. Sci. 11 [6] 1425-1430 (2018) https://doi.org/10.1039/c8ee00014j