• 제목/요약/키워드: Tree models

검색결과 739건 처리시간 0.031초

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Two Uncertain Programming Models for Inverse Minimum Spanning Tree Problem

  • Zhang, Xiang;Wang, Qina;Zhou, Jian
    • Industrial Engineering and Management Systems
    • /
    • 제12권1호
    • /
    • pp.9-15
    • /
    • 2013
  • An inverse minimum spanning tree problem makes the least modification on the edge weights such that a predetermined spanning tree is a minimum spanning tree with respect to the new edge weights. In this paper, the concept of uncertain ${\alpha}$-minimum spanning tree is initiated for minimum spanning tree problem with uncertain edge weights. Using different decision criteria, two uncertain programming models are presented to formulate a specific inverse minimum spanning tree problem with uncertain edge weights involving a sum-type model and a minimax-type model. By means of the operational law of independent uncertain variables, the two uncertain programming models are transformed to their equivalent deterministic models which can be solved by classic optimization methods. Finally, some numerical examples on a traffic network reconstruction problem are put forward to illustrate the effectiveness of the proposed models.

Single Image-Based 3D Tree and Growth Models Reconstruction

  • Kim, Jaehwan;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.450-459
    • /
    • 2014
  • In this paper, we present a new, easy-to-generate system that is capable of creating virtual 3D tree models and simulating a variety of growth processes of a tree from a single, real tree image. We not only construct various tree models with the same trunk through our proposed digital image matting method and skeleton-based abstraction of branches, but we also animate the visual growth of the constructed 3D tree model through usage of the branch age information combined with a scaling factor. To control the simulation of a tree growth process, we consider tree-growing attributes, such as branching orders, branch width, tree size, and branch self-bending effect, at the same time. Other invisible branches and leaves are automatically attached to the tree by employing parametric branch libraries under the conventional procedural assumption of structure having a local self-similarity. Simulations with a real image confirm that our system makes it possible to achieve realistic tree models and growth processes with ease.

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

A study on N-dimensional quad-tree decomposition

  • Yi, Cheon-Hee;Yi, Jae-Young
    • 반도체디스플레이기술학회지
    • /
    • 제8권1호
    • /
    • pp.43-48
    • /
    • 2009
  • We have examined the problem of the number of quad-tree blocks that an n-dimensional rectangle will be decomposed into on the average. the contribution of this paper are both practical and theoretical. In this paper, we develops the overlapping multi-scale models and the region quad-tree models which is useful in computer graphics animation, image processing, pattern recognition and also for modeling three dimensional objects. These models, which represent something of a conceptual departure from other models developed for multi-scale framework were developed with the specific interest of producing smooth estimates.

  • PDF

신용카드 연체자 분류모형의 성능평가 척도 비교 : 예측률과 유틸리티 중심으로 (Comparison of Performance Measures for Credit-Card Delinquents Classification Models : Measured by Hit Ratio vs. by Utility)

  • 정석훈;서용무
    • Journal of Information Technology Applications and Management
    • /
    • 제15권4호
    • /
    • pp.21-36
    • /
    • 2008
  • As the great disturbance from abusing credit cards in Korea becomes stabilized, credit card companies need to interpret credit-card delinquents classification models from the viewpoint of profit. However, hit ratio which has been used as a measure of goodness of classification models just tells us how much correctly they classified rather than how much profits can be obtained as a result of using classification models. In this research, we tried to develop a new utility-based measure from the viewpoint of profit and then used this new measure to analyze two classification models(Neural Networks and Decision Tree models). We found that the hit ratio of neural model is higher than that of decision tree model, but the utility value of decision tree model is higher than that of neural model. This experiment shows the importance of utility based measure for credit-card delinquents classification models. We expect this new measure will contribute to increasing profits of credit card companies.

  • PDF

Individual Tree Growth Models for Natural Mixed Forests in Changbai Mountains, Northeast China

  • Lu, Jun;Li, Fengri
    • 한국산림과학회지
    • /
    • 제96권2호
    • /
    • pp.160-169
    • /
    • 2007
  • The data used to develop distance-independent individual models for natural mixed forests were collected from 712 remeasured permanent sample plots (25,526 trees) of 10-year periodic from 1990 to 2000 in Baihe Forest Bureau of Changbai Mountains, northeast China. Based on analyzing relationship between diameter increment of individual trees with tree size, competitive status, and site condition, the diameter growth models for individual trees of 15 species growing in mixed-species uneven-aged forest stands, that have simple form, good predicting precision, and easily applicable, were developed using stepwise regression method. The main variables influencing on diameter increment of individual trees were tree size and competition, however, the site conditions were not significantly related with diameter increment. The tree size variables (lnDBH and $DBH^2$) were the most significant and important predictors of diameter growth existing in all 15 growth models. The diameter increment was directly proportional to tree diameter for each species. For the competitive factors in growth model, the relative diameter (RD), canopy closure (P), and the ratio of diameter of subject tree with maximum diameter (DDM) were contributed to the diameter increment at a certain extent. Other measures of stand density, such as basal area of stand (G) and stand density index (SDI), were not significantly influenced on diameter increment. Site factors, such as site index, slope and aspect were not important to diameter increment and excluded in the final models. The total variance explained by the final models of squared diameter increment ($R^2$) for all 15 species ranged from 35% to 72% and these results compared quit closely with those of Wykoff (1990) for mixed conifer stands. Using independent data set, validation measures were evaluated for predicting models of diameter increment developed in this study. The result indicated that the estimated precision was all greater than 94% and the models were suitable to describe diameter increment.

Preliminary Identification of Branching-Heteroscedasticity for Tree-Indexed Autoregressive Processes

  • Hwang, S.Y.;Choi, M.S.
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.809-816
    • /
    • 2011
  • A tree-indexed autoregressive(AR) process is a time series defined on a tree which is generated by a branching process and/or a deterministic splitting mechanism. This short article is concerned with conditional heteroscedastic structure of the tree-indexed AR models. It has been usual in the literature to analyze conditional mean structure (rather than conditional variance) of tree-indexed AR models. This article pursues to identify quadratic conditional heteroscedasticity inherent in various tree-indexed AR models in a unified way, and thus providing some perspectives to the future works in this area. The identical conditional variance of sisters sharing the same mother will be referred to as the branching heteroscedasticity(BH, for short). A quasilikelihood but preliminary estimation of the quadratic BH is discussed and relevant limit distributions are derived.

투자와 수출 및 환율의 고용에 대한 의사결정 나무, 랜덤 포레스트와 그래디언트 부스팅 머신러닝 모형 예측 (Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models)

  • 이재득
    • 무역학회지
    • /
    • 제46권2호
    • /
    • pp.281-299
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning methods to forecast the employment. The machine learning methods, such as decision tree, artificial neural network, and ensemble models such as random forest and gradient boosting regression tree were used to forecast the employment in Busan regional economy. The following were the main findings of the comparison of their predictive abilities. First, the forecasting power of machine learning methods can predict the employment well. Second, the forecasting values for the employment by decision tree models appeared somewhat differently according to the depth of decision trees. Third, the predictive power of artificial neural network model, however, does not show the high predictive power. Fourth, the ensemble models such as random forest and gradient boosting regression tree model show the higher predictive power. Thus, since the machine learning method can accurately predict the employment, we need to improve the accuracy of forecasting employment with the use of machine learning methods.

Comparing Carbon Reduction Estimates for Tree Species from Different Quantitative Models

  • Hyun-Kil Jo;Hye-Mi Park
    • Journal of Forest and Environmental Science
    • /
    • 제39권3호
    • /
    • pp.119-127
    • /
    • 2023
  • In this study, quantitative models were applied to case parks to estimate the carbon reduction by trees, which was compared and analyzed at the tree and park levels. At the tree level, quantitative models of carbon storage and uptake differed by up to 7.9 times, even for the same species and size. At the park level, the carbon reduction from quantitative models varied by up to 3.7 times for the same park. In other words, carbon reduction by quantitative models exhibited considerable variation at the tree and park levels. These differences are likely due to the use of different growth environment coefficients and annual diameter at breast height growth rates and the overestimation of carbon reduction due to the substitution of the same genus and group model for each tree species. Extending the annual carbon uptake per unit area of the case park to the total park area of Chuncheon a carbon uptake ranging from a minimum of 370.4 t/yr and a maximum of 929.3 t/yr, and the difference can reach up to 558.9 t/yr. This is equivalent to the carbon emissions from the annual household electricity consumption of approximately 2,430 people. These results suggest that the indiscriminate application of quantitative models to estimate carbon reduction in urban trees can lead to significant errors and deviations in estimating carbon storage and uptake in urban greenspaces. The findings of this study can serve as a basis for estimating carbon reduction in urban greening research, projects, and policies.