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Abstract
A tree-indexed autoregressive(AR) process is a time series defined on a tree which is generated by a branch-

ing process and/or a deterministic splitting mechanism. This short article is concerned with conditional het-
eroscedastic structure of the tree-indexed AR models. It has been usual in the literature to analyze conditional
mean structure (rather than conditional variance) of tree-indexed AR models. This article pursues to identify
quadratic conditional heteroscedasticity inherent in various tree-indexed AR models in a unified way, and thus
providing some perspectives to the future works in this area. The identical conditional variance of sisters sharing
the same mother will be referred to as the branching heteroscedasticity(BH, for short). A quasilikelihood but
preliminary estimation of the quadratic BH is discussed and relevant limit distributions are derived.
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1. Motivation of the Study

We first construct a tree-index on which an AR time series (X) of interest is defined. Following the
lines as in Hwang and Basawa (2011), consider the successive generation sizes {Zt} with the initial
size Z0 = 1. In particular, the super critical G-W(Galton-Watson) branching process {Zt} is defined by

Zt =

Zt−1∑
j=1

ηt j, t = 1, 2, . . . ,

where {ηt j, t = 1, 2, . . . , j = 1, 2, . . .} is an array of iid non-negative integer-valued random variables
with common (offspring) mean m > 1 and variance σ2

η ≥ 0. Let Xt( j) denote the observation on the
jth individual in tth generation. In addition, let Xt−1(t( j)) denote the observation on immediate mother
of the jth individual in tth generation. It is noticed that Xt−1(t( j)) is an observation made in the (t− 1)th

generation. In Figure 1, note that x2(3(1)) = x2(1); x2(3(10)) = x2(6). As with e.g., Hwang (2011),
one can consider two cases separately according as σ2

η > 0 and σ2
η = 0. Corresponding to σ2

η > 0,
Figure 1 illustrates a tree consisting of three generations. It is noted in Figure 1 that there are random
number of individuals in each generation. On the other hand, the case of σ2

η = 0 (see Figure 2) is
referred to as a multi-casting tree where each individual (mother) gives rise to exactly m-offspring
(daughters) in the next generation. When m = 2, the multi-casting tree reduces to a bifurcating case,
i.e., a binary-splitting tree studied by several authors including Cowan and Staudte (1986) and Basawa
and Zhou (2004) among others. Most of the research on the multi-casting case of σ2

η = 0 has been
directed to identification of the conditional mean function of the models. For traditional issues on the
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Figure 1: A tree with σ2
η > 0

Figure 2: A tri-casting tree with σ2
η = 0

multi-casting tree such as the estimation of mean parameters and stability of the models, we refer to,
for instance, Hwang and Choi (2009), Baek et al. (2011), Hwang and Basawa (2011), and Hwang
(2011).

This article, however, focuses on the conditional variance function of the tree-indexed AR models,
identifying preliminary conditional heteroscedasticity inherent in various tree-indexed AR models in
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a unified way. To be more precise, throughout the paper, the identical conditional variance (denoted
by ht) of sisters sharing the same mother will be referred to as the branching-heteroscedasticity(BH,
hereafter). It will be assumed that BH is of a quadratic function of the observations and hence BH
is random rather than a constant. Quadratic nature of the BH is seen to be satisfied for various tree-
indexed AR models, thereby enlarging the class of models under investigation. Due to the wideness of
the BH structure, a quasilikelihood estimation of BH in a broad context is discussed and relevant limit
distribution is derived. We proceeds as follows. In Section 2, the BH in tree-indexed AR models is
introduced and is illustrated via various examples including standard AR, random coefficient AR and
binomial thinning processes. A quasilikelihood but preliminary identification for BH is studied and
relevant asymptotic distributions are presented in Section 3. Although, for simplicity of presentation,
we only confine ourselves to multi-casting cases of σ2

η = 0, main arguments can be extended to cover
the case of σ2

η > 0.

2. Branching Heteroscedasticity(BH) and Illustrative Examples

Cowan and Staudte (1986) introduced a bifurcating-AR(BAR) model {Xt, t = 1, 2, . . .} defined recur-
sively by

X2t = θXt + ϵ2t

X2t+1 = θXt + ϵ2t+1, (2.1)

where {(ϵ2t, ϵ2t+1); t = 1, 2, . . .} is a sequence of iid bivariate random vector with mean vector zero,
common variance σ2 > 0 and correlation between ϵ2t and ϵ2t+1 is given by ρ. It is noted that there
are exactly two offspring X2t and X2t+1 from the common mother Xt. Extending (2.1) to the multi-
casting case of m offspring (m ≥ 3), Hwang and Choi (2009) proposed the following multi-casting
AR(MCAR) model generated by the m equations.

Xmt−(m−2) = θXt + ϵmt−(m−2)

...

Xmt = θXt + ϵmt

Xmt+1 = θXt + ϵmt+1, (2.2)

where {(ϵmt−(m−2), . . . , ϵmt, ϵmt+1), t = 1, 2, . . .} is a sequence of iid m-variate normal random vectors
with mean zero vector and the common variance σ2 > 0. The correlation between any of the two
among ϵmt−(m−2), . . . , ϵmt+1 is modelled as ρ. Note that there are exactly m-sisters Xmt−(m−2), . . . , Xmt+1
sharing the same mother Xt, t = 1, 2, . . . . Define sister vector S t as

S t =
(
Xmt−(m−2), . . . , Xmt, Xmt+1

)T : m × 1. (2.3)

Here ‘T ’ indicates transpose of a matrix (or a vector). It is noted that the conditional mean vector of
S t is given by E(S t |Xt) = (θXt)1m for MCAR model in (2.2). Here and in the sequel 1m is a m × 1
vector of ones. In addition, the conditional variances of each m sister are the same and are given by

Var(Xmt+i|Xt) = σ2, i = −(m − 2),−(m − 1), . . . , 1. (2.4)

Note that the MCAR model (2.1) provides a homoscedastic conditional variance σ2. We will consider
the following heteroscedastic conditional variance ht which is a quadratic function of the mother
observation Xt and such an ht is called a BH(branching heteroscedasticity).
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Definition 1. BH ht is defined as, for some non-negative constants β0, β1 and β2,

ht = Var (Xmt+i|Xt) = β0 + β1Xt + β2X2
t , i = −(m − 2),−(m − 1), . . . , 1. (2.5)

Various examples for BH ht are illustrated below.

Example 1. [MCAR with a intercept]
In accordance with S t, define

et =
(
ϵmt−(m−2), . . . , ϵmt, ϵmt+1

)
, t = 1, 2, . . . .

Consider the following MCAR model with a intercept θ0, as defined by

S t = [θ0 + θXt] 1m + et, (2.6)

where {et} are iid vectors with mean zero vector and variance-covariance matrix Σ,

Σ =


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

σ2. (2.7)

We note the homoscedastic BH given by ht = σ
2.

Example 2. [Random coefficient MCAR; RC-MCAR]
Consider the process {Xt, t ≥ 1} such that

S t = [θ0 + (θ + θt)Xt] 1m + et, (2.8)

where {et} is defined in Example 1, {θt} denotes random coefficient of the autoregressive coefficient
θ, and {θt} is a sequence of iid random variables with mean zero and variance σ2

θ , independently with
{et, t ≥ 1}. It is easy to see that the BH is given by

ht = σ
2
θX2

t + σ
2. (2.9)

Example 3. [Binomial thinning MCAR]
Consider the following integer-valued process {Xt, t ≥ 1} defined by

S t = (θ ◦ Xt)1m + et, (2.10)

where ◦ denotes the binomial thinning operator defined by θ ◦ Xt =
∑Xt

i=1 Bi where {Bi} is a sequence
of iid Bernoulli random variables with success probability θ, 0 < θ < 1. Two processes {Bi} and {et}
are assumed to be independent. Here, m-tuple error process {et} is a sequence of iid integer-valued
random vectors (e.g., multivariate Poisson vectors, c.f., Hwang and Basawa (2011)) with mean vector
λ1m, λ > 0 and variance-covariance matrix Σ in (2.7). See, e.g., Grunwald et al. (2000) and Baek et
al. (2011). Notice that E(S t |Xt) = (θXt + λ)1m and the BH can be verified to be

ht = σ
2 + θ(1 − θ)Xt. (2.11)

Consequently, Example 1 to Example 3 belong to our quadratic class BH defined in (2.5). For more
examples belonging to the quadratic BH class, refer to Baek et al. (2011) and Basawa and Zhou
(2004).



Preliminary Identification of Branching-Heteroscedasticity for Tree-Indexed Autoregressive Processes 813

3. Main Results: Quasilikelihood Identification of BH

LetΛ be a collection of multi-casting AR models {Xt} satisfying the quadratic BH in (2.5). Note thatΛ
includes various models as discussed in Section 2. For the model {Xt} ∈ Λ, introduce the conditional
mean (scalar) function µt(Xt) defined by

µt(Xt) = E(Xmt+i|Xt), i = −(m − 2),−(m − 1), . . . , 1. (3.1)

We then have

E(S t |Xt) = µt(Xt)1m.

The ‘residual’ process {rt} is constructed via

rmt+i = Xmt+i − µt(Xt), i = −(m − 2),−(m − 1), . . . , 1, (3.2)

and it is noted that

ht = E
(
r2

mt+i|Xt

)
, i = −(m − 2),−(m − 2), . . . , 1. (3.3)

It then follows from (3.3) that r2
mt+i − (β0 + β1Xt + β2X2

t ) is a martingale difference for each i =
−(m − 2),−(m − 1), . . . , 1. Consider the m × 1 vector martingale process

Rt(β) =
(
r2

mt−(m−2) −
(
β0 + β1Xt + β2X2

t

)
, . . . , r2

mt+1 −
(
β0 + β1Xt + β2X2

t

))T
. (3.4)

Here β = (β0, β1, β2)T . Note that E(Rt(β)|Xt) = 0 and define the variance-covariance matrix Vt(β) =
Var(Rt(β))|Xt) which is a function of Xt. Let the data consist of S 1, . . . , S n with the starting observation
X1. Due to Godambe (1985), the quasilikelihood estimator of β = (β0, β1, β2)T is obtained from the
quasilikelihood estimating function

Qn(β) =
n∑

t=1

E
(∂Rt(β)

∂βT

)T ∣∣∣∣Xt

 V−1
t (β)Rt(β) : 3 × 1vector. (3.5)

Due to the special structure of the model, Qn(β) is further simplified as

Qn(β) = −
n∑

t=1


1T

m

Xt1T
m

X2
t 1T

m

 V−1
t (β)Rt(β). (3.6)

A quasilikelihood estimator β̂QL of β is obtained by solving quasilikelihood estimating equation viz.,
Qn(β) = 0. It is noted that Qn(β) is optimal within a certain class of estimating functions in the sense
of providing a maximum Godambe information matrix I(Qn(β)) given by

I (Qn(β)) = E
(
∂Qn(β)
∂β

) [
E

(
Qn(β)QT

n (β)
)]−1

[
E

(
∂Qn(β)
∂β

)]T

: 3 × 3. (3.7)

It is often the case in practice that β̂QL may be obtained using one step solution when the quasilikeli-
hood estimating equation Qn(β) = 0 is difficult to solve explicitly. For instance, the one-step solution
β̃QL of Qn(β) = 0 can be obtained via

β̃QL = β̃ −
∂Qn

(
β̃
)

∂β


−1

Qn

(
β̃
)
, (3.8)
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where β̃ is a preliminary consistent estimator of β.
In particular when sisters are conditionally (on Xt) independent, β̂QL can be of a explicit form.

Define the conditional (central) fourth order moment κ(Xt) as

κmt+i(Xt) = E
(
r4

mt+i|Xt

)
, i = −(m − 2),−(m − 1), . . . , 1. (3.9)

Then, Vt(β) = Var(Rt(β)|Xt) = E(Rt(β)RT
t (β)|Xt) reduces to a diagonal matrix of order m with the di-

agonal elements κmt+i(Xt) in (3.9). Consequently, under conditional independence, the QL estimating
function Qn(β) reduces to

Qn(β) = −
n∑

t=1


1T

m

Xt1T
m

X2
t 1T

m




r2
mt−(m−2)κ

−1
mt−(m−2) −

(
β0 + β1Xt + β2X2

t

)
κ−1

mt−(m−2)
...

r2
mt+1κ

−1
mt+1 −

(
β0 + β1Xt + β2X2

t

)
κ−1

mt+1

 , (3.10)

where the argument Xt is suppressed in κ(Xt). This readily gives

β̂QL =


n∑

t=1

1∑
i=(2−m)

κ−1
mt+i


1 Xt X2

t

Xt X2
t X3

t

X2
t X3

t X4
t



−1

n∑
t=1

1∑
i=(2−m)


r2

mt+iκ
−1
mt+i

Xtr2
mt+iκ

−1
mt+i

X2
t r2

mt+iκ
−1
mt+i

 . (3.11)

Limit distribution of β̂QL and (its one step version β̃QL) is identified below.

Theorem 1. Assume that 3 × 3 non-random matrix Q exists and is invertible where

Q = E




1T
m

Xt1T
m

X2
t 1T

m

 V−1
t (β)

(
1m, Xt1m, X2

t 1m

) . (3.12)

We then have as n goes to infinity

√
n
(
β̂QL − β

) d−→ N
(
0,Q−1

)
(3.13)

and

√
n
(
β̃QL − β

) d−→ N
(
0,Q−1

)
. (3.14)

Proof: Notice that the quasilikelihood estimating function Qn(β) forms a vector of martingale differ-
ences and hence one can verify that

n−
1
2 Qn(β)

d−→ N(0,Q). (3.15)

A law of large number for martingales provides us with

n−1
(
∂Qn(β)
∂β

)
p
−→ Q. (3.16)
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Here,
d→ and

p
→ denote respectively “convergence in distribution” and “convergence in probability”.

Since Qn(β̂QL) = 0, one may asymptotically expand Qn(β) in (3.6) as

n−
1
2 Qn(β) =

[
n−1

(
∂Qn(β)
∂β

)] √
n
(
β̂QL − β

)
,

which readily gives the desired result (3.13) using (3.15) and (3.16). Equation (3.14) regarding one-
step solution is immediate because

√
n(β̂QL− β̃) is asymptotically negligible due to the property of the

Newton-Raphson iteration algorithm in (3.8). �

Recall Λ being a collection of all multi-casting AR models {Xt} satisfying the quadratic BH. Re-
sults discussed in Section 3 continues to be valid for all models in Λ and thus implementation of
β̂QL may be a preliminary action in the sense that β̂QL is useful at an early stage of the analysis to
identify a quadratic BH in effect for all models in Λ. We have not much discussed on the conditional
mean function µt(Xt) defined in (3.1). To evaluate the residual process {rt}, one can either estimate
µt(Xt) non-parametrically or parametrically specify the conditional mean function as µt(Xt, θ) involv-
ing parameters θ to be estimated. Let θ̂ denote a “good” estimator of θ, and the resulting estimated
residual is then given by rmt+i = Xmt+i −µt(Xt, θ̂). One may choose θ̂ by minimizing (with respect to θ)∑n

t=1
∑1

i=(2−m)(Xmt+i − µt(Xt, θ))2. It is usual for the conditional variance to depend on the parameter, θ
say, appearing in the mean function. Consequently, we have Rt(β, θ),Vt(β, θ) and Qn(β, θ) in place of
Rt(β),Vt(β) and Qn(β) in (3.6). Specifically, the quasilikelihood estimating equation is given by

Qn(β, θ) = −
n∑

t=1


1T

m

Xt1T
m

X2
t 1T

m

 V−1
t (β, θ)Rt(β, θ). (3.17)

A modified quasilikelihood estimator β̂MQL is obtained by solving Qn(β, θ̂) = 0. Under some regularity
conditions, it can be shown that β̂MQL has the same limiting distribution as for β̂QL addressed in (3.13).
Details are omitted. Refer to, for instance, Basawa and Zhou (2004) for a modified quasilikelihood
estimation.
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