An efficient frequent pattern algorithm is essential for mining association rules as well as many other mining tasks for convergence with its application spread over a very broad spectrum. Models for mining pattern have been proposed using a FP-tree for storing compressed information about frequent patterns. In this paper, we propose a centroid frequent pattern growth algorithm which we called "CAWFP-Growth" that enhances he FP-Growth algorithm by making the center of weights and frequencies for the itemsets. Because the conventional constraint of maximum weighted support is not necessary to maintain the downward closure property, it is more likely to reduce the search time and the information loss of the frequent patterns. The experimental results show that the proposed algorithm achieves better performance than other algorithms without scarifying the accuracy and increasing the processing time via the centroid of the items. The MapReduce framework model is provided to handle large amounts of data via a pseudo-distributed computing environment. In addition, the modeling of the proposed algorithm is required in the fully distributed mode.
Park, Il-Su;Yong, Wang-Sik;Kim, Yu-Mi;Kang, Sung-Hong;Han, Jun-Tae
The Korean Journal of Applied Statistics
/
v.21
no.4
/
pp.639-647
/
2008
This study used the characteristics of the knowledge discovery and data mining algorithms to develop tailored hypertension follow up management model - hypertension care predictive model and hypertension care compliance segmentation model - for hypertension management using the Korea National Health Insurance Corporation database(the insureds’ screening and health care benefit data). This study validated the predictive power of data mining algorithms by comparing the performance of logistic regression, decision tree, and ensemble technique. On the basis of internal and external validation, it was found that the model performance of logistic regression method was the best among the above three techniques on hypertension care predictive model and hypertension care compliance segmentation model was developed by Decision tree analysis. This study produced several factors affecting the outbreak of hypertension using screening. It is considered to be a contributing factor towards the nation’s building of a Hypertension follow up Management System in the near future by bringing forth representative results on the rise and care of hypertension.
Purpose This paper analyzed the impacts of domestic stock market by a global pandemic such as COVID-19. We investigated how the overall pattern of the stock market changed due to the impact of the COVID-19 pandemic. In particular, we analyzed in depth the pattern of stock price, as well, tried to find what factors affect on stock market index(KOSPI) in the healthcare industry due to the COVID-19 pandemic. Design/methodology/approach We built a data warehouse from the databases in various industrial and economic fields to analyze the changes in the KOSPI due to COVID-19, particularly, the changes in the healthcare industry centered on bio-medicine. We collected daily stock price data of the KOSPI centered on the KOSPI-200 about two years before and one year after the outbreak of COVID-19. In addition, we also collected various news related to COVID-19 from the stock market by applying text mining techniques. We designed four experimental data sets to develop decision tree-based prediction models. Findings All prediction models from the four data sets showed the significant predictive power with explainable decision tree models. In addition, we derived significant 10 to 14 decision rules for each prediction model. The experimental results showed that the decision rules were enough to explain the domestic healthcare stock market patterns for before and after COVID-19.
This paper aims at applying the data mining such as decision tree, neural network, and logistic regression to an unsold apartment complex in Wirye new town and developing the model forecasting the result of initial sale contract by house unit. Raw data are divided into training data and test data. The order of predictability in training data is neural network, decision tree, and logistic regression. On the contrary, the results of test data show that logistic regression is the best model. This means that logistic regression has more data adaptability than neural network which is developed as the model optimized for training data. Determinants of initial sale are the location of floor, direction, the location of unit, the proximity of electricity and generator room, subscriber's residential region and the type of subscription. This suggests that using two models together is more effective in exploring determinants of initial sales. This paper contributes to the development of convergence field by expanding the scope of data mining.
In the era of big data, various data mining techniques have been proposed as major analysis methodologies. As complex and diverse data is mass-produced, data mining techniques have attracted attention as a method that forms the foundation of data science. In this paper, we focused on the decision tree, which is frequently used in practice and easy to understand as one of representative data mining methods. Specifically, we analyzed the effect of the splitting method of decision trees on the model performance. We compared the prediction power and structures of decision tree models with different split methods based on various simulated data. The results show that the linear combination split method can improve the prediction accuracy of decision trees in the case of data simulated from nonlinear models with complex structure.
Journal of the Korean Institute of Telematics and Electronics C
/
v.35C
no.10
/
pp.59-68
/
1998
The goal of data mining is to develop the automatic and intelligent tools and technologies that can find useful knowledge from databases. To meet this goal, we propose an efficient data mining algorithm based on the fuzzy decision tree. The proposed method combines comprehensibility of decision tree such as ID3 and C4.5 and representation power of fuzzy set theory. So, it can generate simple and comprehensive rules describing data. The proposed algorithm consists of two stages: the first stage generates the fuzzy membership functions using histogram analysis, and the second stage constructs a fuzzy decision tree using the fuzzy membership functions. From the testing of the proposed algorithm on the IRIS data and the Wisconsin Breast Cancer data, we found that the proposed method can generate a set of fuzzy rules from data efficiently.
Objective: This study was conducted to examine the significant factors affecting media device addiction using the data mining technique for large-scale data from the Panel Study on Korean Children Survey (PSKC). The PSKC data of this study were gathered from the elementary school students in their 10th survey (1,286 3rd grade students). Methods: The SPSS 21.0 program was used for data mining decision tree analysis, and the results are as follows. Results: First, the most important predictor of media device addiction was planning-organization which was among the sub-factors of executive function. Second, as a result of the decision tree analysis, the children with the highest probability of addiction to media devices were ones that had difficulties in planning and organizing, had mothers with a permissive parenting attitude felt difficulties in controlling behavior, and were alone at home for more than two hours a day without any adult supervision. Conclusion/Implications: The results of this study can help guide the direction of future research related to children's addiction to media devices by exploring and analyzing factors that significantly affect children's addiction to media devices.
Journal of the Korean Data and Information Science Society
/
v.23
no.5
/
pp.983-992
/
2012
Social indicator survey can identify the state of society as a whole. When we create a policy, social indicator survey can reflect the public opinion of the region. Social indicator survey is an important measure of social change. Social indicator survey has been conducted in many municipalities (Seoul, Incheon, Busan, Ulsan, Gyeongsangnamdo, etc.). But, the result of social indicator survey analysis is mainly the basic statistical analysis. In this study, we propose a new data mining methodology for effective analysis. We propose a 3-step complex data mining in society indicator survey. 3-step complex data mining uses three data mining method (intervening association rule, clustering, decision tree).
Journal of the Korean Data and Information Science Society
/
v.20
no.2
/
pp.425-433
/
2009
Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. We need a data mining tool to explore a lot of information. There are many data mining tools or solutions; E-Miner, Clementine, WEKA, and R. Almost of them are were focused on diversity and general purpose, and they are not useful for laymen. In this paper we design and implement a web-based data mining tool using PHP and WEKA. This system is easy to interpret results and so general users are able to handle. We implement Apriori algorithm of association rule, K-means algorithm of cluster analysis, and J48 algorithm of decision tree.
Huge information has been made due to the current computing environment and could not be acceptable. People want the information which they can understand and accept easily. They may want not only simple information but also knowledge. That is why data mining becomes a center of information. We use RFM analysis in order to create customer score. Customers are classified into five groups(most oxcellenrexcellenycommoflowerilowest) for a various marketing activities. We can found the significant patterns in each group, and classify customers from loyal customers to leaving customers in the near future by the indirect data mining(e.g. association analysis) and the direct data mining(e.g. decision tree, logistic regression analysis, etc.), which are named in this study. Our research focuses on the advanced models by applying the association rules in data mining. Our results indicate that the indirect data mining and the direct data mining seem to have same outputs, but the former shows more clear pattern then the latter one.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.