최근 대내외적인 건설환경의 급격한 변화와 건설공사의 대형화${\cdot}$복잡화 추세는 내외부적으로 많은 리스크 요인을 증대시키고 있기 때문에, 이에 대한 합리적이고 효율적인 관리방안의 중요성이 크게 대두되고 있다. 본 연구에서는 이러한 리스크 관리방안의 하나로서, 사업추진과정에서의 공사비 증액이 매우 제한되어 있어 입찰단계에서 견적금액의 불확실성 요소(예비비)를 고려해야만 하는 턴키공사 등 대형 건설공사를 대상으로, 이에 내재된 리스크요인의 정량화를 통해 합리적이고 적절한 예비비를 산정할 수 있는 모델을 제시하고자 한다. 예비비 산정모델의 개발을 위하여 실제 수행된 프로젝트를 선정하여 각 공사의 예비비 집행현황, 공사비 현황 등의 자료를 토대로 공사비에 영향을 미치는 인자를 도출하였으며, 몬테칼로 시뮬레이션(Monte Carlo Simulation)과 영향도(Influence Diagram), 의사결정 수형도(Decision Tree)를 혼합한 CRM(Cost Risk Model)을 적용하여 이러한 리스크 인자의 영향을 구조화하였다. 또한 구축된 모델을 기 완료된 대형공사에 적용하여 그 타당성을 검증하고자 하였다.
최근 분산 OLAP은 분산 환경에 적용하기 위하여 DHT기반의 P2P OLAP과 그리드 OLAP연구가 활발하게 진행되고 있다. 그러나 클라우드 컴퓨팅 환경에 적용하기 위하여 P2P OLAP은 structured P2P 특성 때문에 다차원 범위 질의에 문제점이 있고, Grid OLAP은 인접성 및 시계열 고려가 없기 때문에 쿼리 자체의 서브 �V 조회 알고리즘 연구에 치중되어 있다. 따라서 본 논문은 클라우드 컴퓨팅에 적합한 환경 제공을 위해 사용자의 조회 결과가 시계열적 특성으로 여러 사용자에 의해 재사용이 가능하고, 서버상의 휘발성 조회 큐브가 사용자 로컬 메모리에서 직접 분석 질의 시 효율이 좋다는 것에 초점을 두어 중앙관리 P2P방식을 제안하였다. 또한 빠른 질의 결과 및 다차원 범위질의를 위한 다단계 Hybrid P2P방식에 인덱스 부하 분산 및 성능 향상을 위한 클라우드 시스템을 접목하여 Cloud P2P OLAP을 제안하였다. 이를 위한 인덱스 구조로는 큐브 위상관계 트리와 인접성 2차원 Quadtree에, 시계열 Interval-트리를 접목하였으며, 이는 조회나 갱신 시에 일반 OLAP에 비해 큰 효율성을 보였다.
전 세계적으로 지구온난화와 관련된 문제인식이 대두되면서, 도시지역에서의 탄소중립을 위해 탄소흡수원의 역할이 더욱 강조되고 있다. 정주지 탄소흡수원의 관리를 위해서는 탄소흡수원의 현황 파악이 필요하며, 이를 위해서는 많은 인력과 시간과 이에 따른 예산이 소요되게 된다. 본 연구에서는 서울시를 대상으로 기구축된 수목의 위치정보와 Sentinel-2 위성영상을 이용해 수목의 위치를 예측할 수 있는 지도를 제작했다. 이를 위해 수목 유무 데이터셋을 구축한 뒤 위성영상으로부터 구축한 식생지수 16종 정보를 이용하여 분석에 활용할 정형데이터를 생성했다. 그리고 생성된 정형데이터에 Extreme Gradient Boosting (XGBoost) 모델을 적용하여 학습 후, 수목 예측 지도를 제작했다. 이후 Shapley Additive exPlanations (SHAP) 분석을 통해 모델 학습에서 독립변수와 종속변수 간의 관계를 조사하였다. 서울의 국소 부분에 대해 제작된 지도와 세분류 토지피복지도와의 비교분석을 수행했고, 본 연구에서 제작된 수목 예측 모델의 경우 대로변 주변의 탐지하기 어려운 가로수의 경우에도 수목의 위치로 예측이 된다는 것을 확인했다.
연속된 비디오 스트림에는 다양한 정보가 서로간의 명확한 경계구분 없이 표현되며 비디오 신의 의미는 여러 추상화 단계로 해석되어질 수 있다. 또한 비디오에 대한 기술은 사용자의 목적에 따라 각각 다르게 표현될 수 있다. 따라서 비디오 데이터에 대한 내용 기반 검색에서는 사용자가 특정 장면에 대한 내용을 유동적으로 기술할 수 있도록 지원하여야 함과 동시에 다양한 사용자가 기술한 내용이 일관되게 유지되어야 한다. 본 논문은 관계형 모델과 객체 지향 모델과 같은 기존의 데이터 베이스 모델에서 효과적인 내용 기반 검색 및 브라우징 방법을 제안한다. 유동적으로 정의된 속성과 속성값은 트리 구조의 사전 형태로 구조화되며 비디오 데이터에 대한 기술은 고정 데이터베이스 스키마에 저장된다. 또한 본 논문에서는 사용자의 효과적인 비디오 브라우징 작업을 지원하기 위한 브라우저를 제안한다. 사전 브라우저(dictionary browser)는 사용자의 질의 표현과 의미 기술 작업을 단순화시키고, 결과 브라우저(result browser)는 사용자가 질의 조건들의 다양한 조합에 대한 질의 결과를 분석할 수 있도록 지원한다.
최근 무선 네트워크 기술이 각광을 받으면서 다양한 애드 혹 환경에서의 라우팅 프로토콜이 제안되고 있다. 하지만 애드 혹 네트워크라는 환경의 특성 상 보안상 취약한 문제점을 가지고 있으며, 기존의 유선 네트워크 환경에서 제안되었던 보안 라우팅 프로토콜을 적용시키기 힘들다는 문제점이 있다. 이에 따라 Secure AODV나 SRPTES 등의 보안성을 고려한 새로운 애드 혹 라우팅 프로토콜이 제안되었지만 다양한 무선 네트워크 환경의 변화에 유동적으로 대응하기 힘들고 보안적인 측면에 집중을 한 나머지 에너지소모 측면에서는 단점을 노출하고 있다. 본 논문에서는 다양한 애드 혹 네트워크 환경에 적용 가능하고, 기존의 보안 라우팅 프로토콜에 비해 에너지 효율적인 보안 라우팅 프로토콜을 제안하고자 한다. 보안 정보의 보호를 위해 Tree 구조를 도입하고 보안 단계를 통한 Multi-path를 구성하여 악의적인 노드의 Dropping Attack에 대비하여, 예기치 못한 Data Packet의 손실에 대해서도 효율적으로 대처하게 하였다. 실험 결과 악의적인 노드가 존재하는 네트워크 환경에서 기존의 애드 혹 네트워크 보안 라우팅 프로토콜보다 패킷 전송 성공률을 21%정도 향상시킬 수 있었으며 또한 각 노드의 에너지를 균등하게 소모함으로써 전체적인 네트워크의 생존시간이 연장되는 것을 확인할 수 있었다.
Purpose: The purpose of this study was to identify factors affecting health promotion behavior among workers with high risk of metabolic syndrome. This study was based on the planned behavior theory. Methods: The participants were 167 workers at high risk of metabolic syndrome. Data were collected using a structured questionnaire. Surveyed variables were attitude, subjective norm, perceived behavioral control, intention, and health promotion behavior. Data were analyzed using descriptive statistics, t-test, ANOVA, Pearson's correlation coefficients, and hierarchical regression analysis with SPSS/WIN 22.0. Results: Perceived behavioral control affected the intention of health promotion behavior among the workers with high risk of metabolic syndrome. It explained 62% of variance in the intention of health promotion behavior (F=40.09, p<.001). Perceived behavioral control and occupation affected health promotion behavior among the risk workers with high risk of metabolic syndrome. The two factors explained 16% of variance in health promotion behavior (F=4.95, p<.001). Conclusion: The findings of this study suggest that perceived behavioral control is the only factor affecting health promotion behavior when the theory of planned behavior was applied. Therefore, intervention programs for improving health promotion behavior should be focused on strengthening perceived behavioral control.
With the innovation of information technology, non-face-to-face robo advisor with high accessibility and convenience is spreading. The current robot advisor recommends appropriate investment products after understanding the investment propensity based on the structured data entered directly or indirectly by individuals. However, it is an inconvenient and obtrusive way for financial consumers to inquire or input their own subjective propensity to invest. Hence, this study proposes a way to deduce the propensity to invest in unstructured data that customers voluntarily exposed during consultation or online. Since prediction performance based on unstructured document differs according to the characteristics of text, in this study, classification algorithm optimized for the characteristic of text left by financial consumers is selected by performing prediction performance evaluation of various learning discrimination algorithms and proposed an intelligent method that automatically recommends investment products. User tests were given to MBA students. After showing the recommended investment and list of investment products, satisfaction was asked. Financial consumers' satisfaction was measured by dividing them into investment propensity and recommendation goods. The results suggest that the users high satisfaction with investment products recommended by the method proposed in this paper. The results showed that it can be applies to non-face-to-face robo advisor.
본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.
본 연구에서는 고객 세분화를 위하여 고객프로필과 사이트 접속자료를 통합, 분석하는 분석적 CRM을 시도하였다. 실제 고객 데이터를 분석하여 고객의 특성과 기호, 방문행태 등을 이해할 수 있다면 이를 기반으로 고객 세분화(segmentation)가 가능할 것이다. 예를 들어 고객의 거주지, 재산정도, 교육수준, 연령 등 인적정보를 토대로 동일 사이트에 접속하는 고객의 공통점을 찾게 된다면 이들 고객에 접근할 수 있는 적절한 마케팅 미디어가 무엇인지, 어느 페이지에 홍보물을 게재하는 것이 효과적일 것인가 등을 결정하는 데 도움을 줄 수 있을 것이다. 한편 웹 기반 마이닝의 핵심은 웹으로 부터의 자료를 어떻게 하면 효율적으로 수집할 것인가, 또한 이렇게 수집된 자료를 다양한 (multiple) DB와 어떻게 통합하고 분석하여 필요한 정보를 추출할 것인가 일 것이다. 본 연구에서는 실제 인터넷 사업자의 사용자 그룹의 비율에 따라 구성된 패널을 활용하여 효율적인 자료수집 방안을 모색하였다. 패널 구성원에 대한 웹 데이터를 수집함으로써 신뢰성과 대표성을 확보하면서 분석대상 자료의 양을 적절한 수준으로 유지할 수 있었다. 또한 고객자료 분석에서는 OLAP과 데이터 마이닝 기법(의사결정나무)을 동시에 사용하여 그 분석 결과를 비교함으로써 각 기법의 결과를 상호 확인하고 보완할 수 있었다. 이 결과는 데이터 마이닝 기법에 의해서 발견된 패턴을 분석하고 확인하는 작업에서 OLAP이 유용하게 사용될 수 있다는 과거 연구의 주장을 확인하였다.
어노테이션 시스템에서 원본문서가 갱신되었을 경우 어노테이션이 항상 적절한 위치를 유지하기 위해서는 로버스트(robust)한 위치재생성(repositioning) 기능이 필요하다. XML 문서환경에서 어노테이션에 대한 위치재생성을 위해서는 텍스트 정보뿐만 아니라 구조문서 특성을 포함할 수 있어야 한다. 이를 위하여 본 논문에서는 XML 기반의 원본문서 및 어노테이션 정보를 논리구조트리(logical structure tree)로 표현하고, 각 트리간의 대응관계를 분석하여 복수의 후보 앵커들을 생성한다 또한 복수의 후보 앵커들 중 최적의 후보 앵커를 선택하기 위하여 논리구조트리 앵커 노드의 문자열(textual data) 및 레이블 정보에 기반한 단계별 앵커링 기준을 제시한다. 그 결과 본 논문에서는 구조문서 환경에서 다양한 형태의 컨텍스트 갱신이 발생하였을 경우에도 로버스트한 위치재생성이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.