• Title/Summary/Keyword: Treadmill-Training

Search Result 270, Processing Time 0.033 seconds

Effects of aerobic and combined exercise on body composition and blood lipid in the middle-aged women (운동형태에 따른 중년여성의 신체구성과 혈중지질의 변화)

  • Kim, Yong Cheol;Kim, Young Soo;Yang, Jeong Ok;Lee, Bom Jin;Lee, Joong Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1241-1251
    • /
    • 2013
  • The purpose of this study was to investigate and compare the effects of aerobic and complex exercise on body composition and blood lipids in the middle-aged women. Sixteen women whose ages ranged in 40 to 50 years were included in the sample of the study. The sample was divided into two groups: (a) aerobic exercise group (n = 8) and (b) combined exercise training group (n = 8). The aerobic exercise program consisted of bicycle ergometer, stepper, and treadmill, whereas; the combined exercise program was designed to improve muscular strength and aerobic capacity. Both programs took place 4 times a week for 12 weeks with the gradual increase of intensity (HRmax 60% 75% and 1 RM 60% 80%). Data were analyzed by nonparametric methods for pre-post within group mean differences (Wilcoxon signed rank test) and for between group mean differences (Wilcoxon rank sum test). Results indicated that there were statistically significant differences in BMI, body fat mass, and triglyceride within the sample of combined exercise; whereas, no significance existed in any variables within the aerobic exercise group. Results also revealed that statistical significance did exist in body fat mass between the combined and aerobic exercise group. These results implies that the combined exercise may be superior to aerobic only excercise for the body composition and blood lipid of the middle-aged women.

The Effects of a Cardiac Rehabilitation Program on Health Behavior Compliance, Cardiovascular Function, and Quality of Life for the Patients with Ischemic Heart Disease (심장재활 프로그램이 허혈성 심장환자의 건강행위 이행, 심혈관 기능 및 삶의 질에 미치는 효과)

  • 조현숙;김광주
    • Journal of Korean Academy of Nursing
    • /
    • v.30 no.3
    • /
    • pp.560-570
    • /
    • 2000
  • This study is aimed at developing a cardiac rehabilitation program and enlightening the effects of the program on patient's health behavior compliance, cardiovascular functional capacity, and quality of life. Using a quasi-experimental approach the nonequivalent control group pretest - posttest design was accepted for this study. The subjects of this study consisted of 55 patients with ischemic heart disease at the Cardiac Center of 'G' Hospital located in Inchon from May 1, 1998 to April 30, 1999. The patients were divided into two groups: the experimental group, which participated in the cardiac program with 30 patients and 25 patients of a control group were not involved in the program. There were two phases in the cardiac rehabilitation program: the first phase was a team approach education. It focused on reducing the risk of ischemic heart problems. The second phase was individual training by using a home based exercise program, which was comprised of 8 weeks, three sessions per week, 40-60 minutes per session, and followed by consultation. Every session involved 20-40 minutes of aerobic exercise at 40-60% of heart rate reserve, 11∼13 RPE and 10 minutes of warm-up and 10 minutes of cool-down exercises. The experimental tools for the study were the health behavior compliance scale developed by Lee, Yoon-hee (1992), and quality of life scale developed by McGirr et al.(1990). RPPsubmax were measured by the treadmill. The collected data was processed by SPSS and analyzed by χ²test and t-test. The results of this study were as follows: 1. The health behavior compliance in experimental group was significantly increased (t=5.091, p=.000) when compared to the control group. 2. RPPsubmax also decreased significantly in the experimental group when compared to the control group(t=-2.109, p=.040). 3. The quality of life significantly improved in the experimental group (t=3.853, p=.000) as compared to the control group. As the above results of this study revealed, the effectiveness of the cardiac rehabilitation program of the study was confirmed. It increased the health behavior compliance for reducing the risk of further coronary events, enhanced the cardiovascular functional capacity, and eventually improved the patient's quality of life.

  • PDF

Effects of Cheonggukjang Diet and Aerobic Exercise on Lipid Metabolism and Antioxidant Enzyme in Rats (청국장 식이와 유산소 운동이 흰쥐의 지질대사 및 항산화효소에 미치는 영향)

  • Kim, Sang-Woo;Jeong, Seon-Tea;Baek, Yeong-Ho
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.657-663
    • /
    • 2013
  • The purpose of this study was to examine the effects of a cheonggukjang diet and aerobic exercise on lipid metabolism and antioxidant enzyme activity in rats. Thirty-two Sprague Dawley rats were randomized into a cheonggukjang diet with aerobic exercise (A), aerobic exercise (B), cheonggukjang diet (C), and control group (D). The cheonggukjang diet group consumed 20 g of 20% cheonggukjang a day with their normal diet. Exercise training consisted of treadmill running (25~40 min, 5 day/wk) and the exercise intensity was gradually increased. The results are as follows: T-C was significantly lower (p<0.05) in A compared to B and C. TG was significantly lower (p<0.001) in A compared to D. B and C were significantly lower than D. HDL-C was significantly higher (p<0.05) in C compared to D. LDL-C was not statistically different across the groups. Additionally, TBARS were not statistically different in the control or experimental groups. SOD was significantly lower (p<0.05) in A compared to D. C was significantly lower (p<0.05) that of D. CAT and GPx failed to reach the statistical difference between experimental and control groups. The major findings of this study were that aerobic exercise with a chenggukjang diet intervention improved lipid profiles and antioxidant capacity in this animal model. Therefore, a cheonggukjang diet and aerobic exercise will help to improve antioxidant capacity and prevent lifestyle related diseases.

Effects of Exercise Type on ẞ-Amyloid, BDNF and Cognitive Function in Type 2 Diabetic Mice (제 2형 당뇨 마우스의 운동 형태가 ẞ-Amyloid, BDNF 및 인지기능에 미치는 영향)

  • Kim, Do-Yeon;Woo, Jinhee;Shin, Ki-Ok;Roh, Hee-Tae;Lee, Yul-Hyo;Yoon, Byung-Kon;Park, Chan-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.409-417
    • /
    • 2020
  • The purpose of this study was to investigate the effects of different types of exercise training on ẞ-Amyloid, Brain-Derived Nerurotrophic Factor(BDNF) and cognitive function in mice with Diabetes Mellitus Group(DM.G). 24 male C57BL/6 mice were randomly assigned to the control (C.G. n = 6) and Diabetes Mellitus Group(DM.G. n = 18) groups. After the Diabetes Mellitus induction period, the DM group was subdivided into DM.G. + sedentary (DM.G., n = 6), DM.G. + endurance exercise (A.G, n = 6), and DM.G. + resistance exercise (R.G., n = 6). The A.G. and R.G performed treadmill and ladder climbing exercises 5 times per week for 8 weeks, respectively. After 8 weeks the results are as follows: ẞ-Amyloid showed higher levels of DM.G. than in A.G., R.G., and C.G., but was not statistically significant(p>.05). BDNF was significantly lower in DM.G. than in C.G., A.G., and R.G.(p <0.05). The Y-maze task performance for cognitive function was significantly lower in DM.G. than in C.G., A.G., and R.G.(p <0.05). These results predict that diabetes can negatively affect ẞ-Amyloid, BDNF and cognitive function. It can also be predicted that low-intensity exercise can positively improve ẞ-Amyloid, BDNF and cognitive function regardless of the type of exercise.

Preceding Research for Estimating the Maximal Fat Oxidation Point through Heart Rate and Heart Rate Variability (심박 및 심박변화를 통한 최대 지방 연소 시점의 추정)

  • Sim, Myeong-Heon;Kim, Min-Yong;Yoon, Chan-Sol;Chung, Joo-Hong;Noh, Yeon-Sik;Park, Sung-Bin;Yoon, Hyung-Ro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1340-1349
    • /
    • 2012
  • Increasing the oxidation of fat through exercise is the recommendable method for weight control. Preceding researches have proposed increase in the usage of fat during exercise in stabilized state and under maximum exertion through aerobic training. However, such researches require additional equipment for gas analysis in order to measure the caloric value or gas exchange of subjects during exercise. Such equipments become highly restrictive for those exercise and cause substantially higher cost. According to this, we have presented the method of estimating the maximal fat oxidation point through changes in LF & HF which reflects changes in heart rate and the autonomic nervous system in order to induce exercise for a less restrictive and efficient fat oxidation than existing methods. We have conducted exercise stress test on subject with similar exercise abilities, and have detected the changes in heart rate and changes in LF & HF by measuring changes in fat oxidation and measuring ECG signals at the same time through a gas analyzer. Changes in heart rate and HRV of the subjects during exercising was detected through only the electrocardiographic signals from exercising and detected the point of maximum fat oxidation that differs from person to person. The experiment was carried out 16 healthy males, and used Modified Bruce Protocol, which is one of the methods of exercise stress test methods that use treadmill. The fat oxidation amount during exercise of all the subjects showed fat oxidation of more than 4Fkcal/min in the exercise intensity from about 5 minutes to 10 minutes. The correlation between the maximal fat oxidation point obtained through gas analysis and the point when 60% starts to be relevant in the range from -0.01 to 0.01 seconds for values of R-R interval from changes in heart rate had correlation coefficients of 0.855 in Kendall's method and in Spearman's rho, it showed significant results of it being p<0.01 with 0.950, respectively. Furthermore, in the changes in LF & HF, we have determined the point where the normalized area value starts to become the same as the maximal fat oxidation point, and the correlation here showed 0.620 in Kendall and 0.780 in Spearma of which both showed significant results as p<0.01.

Both endurance- and resistance-type exercise prevents neurodegeneration and cognitive decline in mice with impaired glucose tolerance

  • Woo, Jinhee;Shin, Ki-Ok;Park, Chan-Ho;Yoon, Byung-Kon;Kim, Do-Yeon;Bae, Ju-Yong;Lee, Yul-Hyo;Ko, Kangeun;Roh, Hee-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.804-812
    • /
    • 2019
  • The purpose of this study was to investigate the effects of different types of exercise training on neurodegeneration and cognitive function in mice with impaired glucose tolerance (IGT). Thirty-six male C57BL/6 mice were randomly assigned to the control (CO, n = 9) and impaired glucose tolerance (IGT, n = 27) groups. The IGT group consumed 45% high fat diet for 4 weeks and received 40 mg/kg of streptozotocin twice in the lower abdomen to induce IGT. After the IGT induction period, the IGT group was subdivided into IGT + sedentary (IGT, n = 9), IGT + endurance exercise (IGTE, n = 9), and IGT + resistance exercise (IGTR, n = 9). The IGTE and IGTR groups performed treadmill and ladder climbing exercises 5 times per week for 8 weeks, respectively. Fasting glucose and glycated hemoglobin (HbA1c) levels were significantly higher in IGT group than in CO, IGTE, and IGTR groups (p < 0.05). HOMA-IR was significantly higher in IGT group than CO group (p < 0.05). Hippocampal catalase (CAT) was significantly lower in IGT group than in CO group (p < 0.05), while beta-amyloid ($A{\beta}$) was significantly higher in IGT group than in CO group (p < 0.05). Hippocampal tau was significantly higher in IGT group than in CO, IGTE, and IGTR groups (p < 0.05). The Y-maze test performance for cognitive function was significantly lower in IGT group than in CO, IGTE, and IGTR groups (p <0.05). These results suggest that IGT induces neurodegeneration and negatively affects cognitive function, while regular exercise may be effective in alleviating neurodegeneration and cognitive decline regardless of exercise type.

Effects of Dietary Caloric Restriction and Exercise on GLUT 2 in Liver and GLUT-4 and VAMP-2 in Muscle Tissue of Diabetic Rats

  • Jeong, Ilgyu;Oh, Myungjin;Jang, Moonnyeo;Koh, Yunsuk;Biggerstaff, Kyle D.;Nichols, David;Ben-Ezra, Vic
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • It has been shown that both caloric restriction and exercise, enhances glucose uptake through translocation of GLUT-4 protein. It remains unclear how exercise and caloric restriction affect the changes in VAMP (vesicle-associated membrane protein) in skeletal muscle and GLUT-2 in liver. This study investigated the effects of exercise training and caloric restriction on the expressions of glucose transport relating proteins in muscle and liver tissues in diabetic rats. Forty male Sprague-Dawley rats (250±10 g; 8 week in age) were assigned equally to four different groups; control (C), exercise only (E), dietary restriction only (D) and dietary restriction and exercise (DE). Daily food consumption was monitored to establish baseline intake. Both C and E groups consumed baseline food intake while D and DE groups were provided with only 60% of baseline total food intake. Forty-eight hours after intraperitoneal injection of STZ (50 mg/kg), diabetes was confirmed (8-hr fasting blood glucose levels ≥300 mg/dl). Rats in the E and DE groups exercised on a motorized treadmill for 30 min/d, 5 days/week for 4 weeks (5 min running at 3 m/min, 0% grade; 8 m/min for the next 5min, and then 15 m/min for 20 min). Rats were sacrificed 48 hrs after the last bout of exercise. Soleus muscle and liver were extracted to analyze for GLUT-4, VAMP-2, and GLUT-2, respectively. All variables were analyzed using the Western Blotting technique. All values were expressed as optical volume measured by optical density. A Two-way ANOVA was used to examine the difference between groups and applied Duncan's test for post-hoc. No significant differences in GLUT-2 expression were found among groups. However, E (280133±13228 arbitrary units{AU}) and DE (268833±14424 AU) groups showed significantly higher (p<.001) levels of GLUT-4 as compared with C (34461±2099 AU) and D groups (27847±703 AU). VAMP-2 protein expression increased (p<.001) in E (184137±7803 AU) and DE (189800±10856 AU) groups as compared to C (74201±8296AU) and D (72967±863 AU) groups. These results suggest that either exercise with or without caloric restriction increases the up-regulation of GLUT-4 and VAMP-2 in skeletal muscle of diabetic rats. However, GLUT-2 protein in liver was not affected by either exercise or exercise with caloric restriction.

Effects of Regular Exercise and L-Arginine Intake on Abdominal Fat, GH/IGF-1 Axis, and Circulating Inflammatory Markers in the High Fat Diet-Induced Obese Aged Rat (규칙적인 운동과 L-arginine의 섭취가 고지방식이 유도 비만 노화생쥐의 복부지방량, GH/IGF-1 axis 및 혈관염증지표에 미치는 영향)

  • Park, Sok;Sung, Ki-Woon;Lee, Jin;Lee, Cheon-Ho;Lee, Young-Jun;Yoo, Young-June;Park, Kyoung-Shil;Min, Byung-Jin;Shin, Yong-Sub;Kim, Jung-Suk;Jung, Hun
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.516-523
    • /
    • 2012
  • The purpose of this study was to investigate the effect of exercise and/or L-arginine on abdominal fat, IGF-1 on GH/IGF-1 axis, fibrinogen, and PAI-1 in aged and obese rats. Male Sprague-Dawley rats were treated with a D-galactose aging inducing agent (50 mg/kg) given intraperitoneally for 12 weeks. Thirty-two male Sprague-Dawley rats were treated and divided into four groups: aging-high fat diet group (AG+HF), AG+HF with L-arginine intake group (AG+LA), AG+HF with exercise group (AG+EX), and AG+EX with L-arginine intake group (AG+LA+EX). The experimental rats underwent treadmill training (60 min/day, 6 days/week at 0% gradient) for 12 weeks. L-arginine was given orally (150 mg/kg/day) for 12 weeks. After the experiment, blood was collected from the left ventricle and abdominal fat was extracted. The results showed that GH was significantly increased in AG+EX and AG+AL+EX. IGF-1 was significantly increased in both the AG+AL+EX and AG+EX group ($p$<0.05), while fibrinogen and PAI-1 were not significantly different among the groups. Abdominal fat was significantly decreased in the AG+LA, AG+EX, and AG+LA+EX groups ($p$<0.05) compared with the AG+HF group. In conclusion, this study suggests that exercise alone or L-arginine alone or a combination not only increases the GH and IGF-1 concentration, but also decreases the abdominal fat mass.

Assessment of Effect of Pulmonary Rehabilitation on Skeletal Muscle Metabolism by $^{31}P$ Magnetic Resonance Spectroscopy (호흡재활치료 전후 $^{31}P$ 자기공명분석법을 이용한 골격근대사의 변화에 관한 연구)

  • Cho, Won-Kyung;Kim, Dong-Soon;Choe, Kang-Hyeon;Park, Young-Joo;Lim, Tae-Hwan;Shim, Tae-Sun;Lim, Chae-Man;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.5
    • /
    • pp.1040-1050
    • /
    • 1997
  • Pulmonary rehabilitation has been known to improve dyspnea and exercise tolerance in patients with chronic lung disease, although it does not improve pulmonary function. The mechanism of this improvement is not clearly explained till now; however some authors suggested that the improvement in the skeletal muscle metabolism after the rehabilitation could be a possible mechanism. The metabolc changes in skeletal muscle in patients with COPD are characterized by impaired oxidative phosphorylation which causes early activation of anaerobic glycolysis and excess lactate production with exercise. In order to evaluate the change in the skeletal muscle metabolism as a possible cause of the improvement in the exercise tolerance after the rehabilitation, noninvasive $^{31}P$ magnetic resonance spectroscopy(MRS) of the forearm flexor muscle was performed before and after the exercise training in nine patients with chronic lung disease who have undertaken intensive pulmonary rehabilitation for 6 weeks. 31p MRS was studied during the sustained isometric contraction of the dominant forearm flexor muscles up to the exhaustion state and the recovery period. Maximal voluntary contraction(MVC) force of the muscle was measured before the isometric exercise, and then 30% of MVC force was constantly loaded to each patient during the isometric exercise. After the exercise training, exercise endurance of upper and lower extremities and 6 minute walking distance were significantly increased(p<0.05). There were no differences of baseline intracellular pH (pHi) and inorganic phosphate/phosphocreatine(Pi/PCr). After rehabilitation pHi at the exercise and the exhaustion state showed a significant increase($6.91{\pm}0.1$ to $6.99{\pm}0.1$ and $6.76{\pm}0.2$ to $6.84{\pm}0.2$ respectively, p<0.05). Pi/PCr at the exercise and the recovery rate of pHi and Pi/PCr did not show significant differences. These results suggest that the delayed intracellular acidosis of skeletal muscle may contribute to the improvement of exercise endurance after pulmonary rehabilitation.

  • PDF

Effects of L-Arginine Supplementation and Regular Exercise in D-Galactose Induced Aging Rat Aorta: Study on Inflammatory Factors, Vasodilation Regulatory Factors (노화유도 쥐의 대동맥에서 L-arginine 투여와 규칙적인 운동의 효과: 염증인자와 혈관이완조절 인자의 변화)

  • Lee, Jin;Kwak, Yi-Sub;Yoo, Young-June;Park, Sok
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1415-1421
    • /
    • 2011
  • The purpose of this study was to identify the effects of an L-arginine supplementation and regular exercise training on NF-${\kappa}B$, TNF-${\alpha}$, iNOS, Cav-1, eNOS and Ang II in the aortas of D-galactose (D-gal) induced aging rats. The male Strague-Dawley rats were treated with a D-galactose aging inducing agent; the D-gal injection (50 mg/kg) was given intraperitoneally for 12 wk. Experimental groups were divided into five groups: (1) Young control group (Y-Con, n=8), (2) Aging control group (A-Con, n=8), (3) Aging exercise group (A-Ex, n=8), (4) Aging exercise group with L-arginine supplementation group (A-Ex+A, n=8), and (5) Aging with L-arginine supplementation group (A-A, n=8). The exercise consisted of running on a treadmill for 60 min/day at 20 m/min for 6 day/wk, at 0% gradient for 12 wk. The L-arginine supplementation was given orally at a dose of 150 mg/kg/day for 12 wk. The findings of this study were as follows: 1. NF-${\kappa}B$, TNF-${\alpha}$, iNOS, Cav-1 and Ang II proteins in the aortas of D-gal induced rats were significantly increased, however, L-arginine supplementation and regular exercise resulted in a significant inhibition in the expression of NF-${\kappa}B$, TNF-${\alpha}$, iNOS, Cav-1 and Ang II proteins. 2. eNOS protein in the aortas of D-gal induced rats was significantly decreased, however, L-arginine supplementation and regular exercise resulted in a significant increase in the expression of eNOS proteins. In conclusion, the findings of the present study reveal that L-arginine supplementation alone or regular exercise alone or in combination with L-arginine supplementation for 12 wk increases anti-inflammatory effects by decreasing NF-${\kappa}B$, TNF-${\alpha}$, and iNOS protein expressions within the aortic tissue. In addition, L-arginine supplementation alone or regular exercise alone or in combination with L-arginine supplementation may prevent endothelial function by up-regulation of eNOS protein in the aortas of D-gal induced aging rats.