• Title/Summary/Keyword: Trap sampling

Search Result 61, Processing Time 0.022 seconds

Comparison of Occurrences of Coleoptera by Three Sampling Methods in Mt. Yeonyeop Area, Korea (채집법에 따른 연엽산 일대 딱정벌레목의 출현상 비교 분석)

  • Jeong Jong-Kook;Lee Seung-Il;Choi Jae-Seok;Kwon Oh-Kil
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.228-237
    • /
    • 2005
  • To compare the occurrence of Coleoptera by different sampling methods such as light trap, pitfall trap and sweeping, we collected samples every month from April to September,2004 in the Mt. Yeonyeop, Gangwon-do, Korea. According to the sampling methods, the species composition, abundance and dry weight were completely different. We collected 151 species in 35 families (690 individuals) by sweeping method, 148 species in 30 families (689 individuals) by light trap, and 112 species in 18 families (1,674 individuals) by pitfall trap, respectively. The dry weight in collected sample was about 181.46 g in pitfall trap,39.85 g in light trap, and 10.89 g in sweeping method, respectively. Relatively high flight and small-sized beetles such as Coccinellidae, Nitidulidae, Scarabaeidae were collected in light trap. The species diversity was high in July. Unlike the samples collected in light trap, the pitfall trap samples were big-sized saprophagous or carnivorous beetles such as Carabidae, Silphidae, Staphylinidae. The pitfall trap showed relatively the higher number of individual and lower species diversity compared to other methods. The major samples collected by sweeping method were small-sized carnivorous or herbivorous beetles such as Chrysomelidae, Curculionidae, Coccinellidae. The peak of species diversity occurred in May. The similarity was calculated with the Jaccard's index over the light trap-pitfall trap was 0.07, light trap-sweeping was 0.10, and pitfall trap-sweeping was 0.01. Consequently, similarity of sampling methods was relatively low. In conclusion, efficiency of the each sampling methods significantly differed in the species composition of Coleoptera. This study emphasize the necessity of using three sampling methods in the area of diversity research.

Comparison of Insect Diversity in Relation to the Sampling Method, Time And Window (채집 방법과 시기 및 빈도에 따른 곤충의 다양성 비교)

  • Park, Geun-Ho;Cho, Soo-Won
    • Korean journal of applied entomology
    • /
    • v.46 no.3
    • /
    • pp.375-383
    • /
    • 2007
  • To find out the affection of the sampling techniques to the result of a faunistic study, we surveyed the insect fauna of the Chungbuk National University (four different sites) for a year, from spring to fall. For each site, four different collecting methods: light trap, net sweeping, pitfall trap, and window trap, were applied and the collecting was done every other week for a total of 16 times. A total of 14 orders and 672 species were collected. 501 species were collected by the light trap, which covers about 75% of the total number of species, turn out to be the most effective, while other methods could only cover 18% or less. On average, only about 30% of the species collected at a given time of collecting were re-collected at the next collecting, which means about 70% of the species collected from the first collecting remains not collected in the next collecting if you collect insects every other week. The result suggests that, in addition to applying diverse collecting methods, frequent sampling, or narrow sample window, is another very important factor for a good representation of species diversity in an insect faunistic study.

Biodiversity of Invertebrate on Organic and Conventional Pear Orchards (유기와 관행재배 배 과수원의 무척추동물의 종 다양성 연구)

  • Kim, Do-Ik;Kim, Seon-Gon;Ko, Sug-Ju;Kang, Beom-Ryong;Choi, Duck-Soo;Lim, Gyeong-Ho;Kim, Sang-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.1
    • /
    • pp.93-107
    • /
    • 2011
  • This research was carried out to investigate invertebrate fauna with organic and conventional pear orchards, which used four collected methods; soil sampling for soil microorganism, pitfall, malaise, and black light trap for over ground species. Collected species were 37 species, 1,184 individuals in organic and 28 species, 501 individuals by soil sampling in conventional pear fields. Those were 38 species, 646 individuals and 29 species, 440 individuals by pitfall trap, 55 species 650 individuals and 47 species, 508 individuals by malaise trap, and 23 species, 201 individuals and 9 species, 42 individuals by black light trap. Collembola was collected 389 individuals in organic which was 5 times than in conventional in soil sampling. In pitfall trap, that was 183 individuals which was 3 times. The diversity indices of organic pear orchards were 1.956 in May, 2.638 in August and those of conventional was 1.426 in May, 2.011 in August in soil sampling. In pitfall trap, the dominant species were spiders, collembollan, and coleopteran. Among Coleoptera, indicator insects for the evaluation of agricultural environment suggested were Eusilpha jakowelewi as organic pear orchard and Anisodactykus punctatipennis and Pheropsophus jessoensis as conventional. Malaise trap was collected dominant species as Diptera and Hymenoptera of Braconidae and Ichneumonidae. The diversity indices of organic pear orchards were 2.952, 3.120, and 2.010 in pitfall, malaise and black light trap in over ground invertebrate sampling. The highest diversity was in malaise trap. The higher diversity indices, the lower dominance indices.

Comparison between Head Space Gas Sampling and Purge & Trap Sampling in Water Analysis

  • Nagayanagi, Yutaka;Nakagawa, Katsuhiro;Saito, Yoshihiro;Kim, Poongzag
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.739-744
    • /
    • 1995
  • The two main methods to prepare water samples for analyzing volatile organic compounds(VOC's) were investigated. One is the purge and trap(PT) method and another is the head space(HS) sampling method. Both methods were effective to transfer the low boiling point components from the water sample onto the capillary column. The cryo-focusing at the top of the main capillary column was an effective way to obtain the sharpness of the chromatographic peaks but could be avoided when a semi-wide bore column was used. The recovery from the same amount of the sample was better in PT than in HS but a larger sample volume in HS method could compensate the lower efficiency. Therefore PT is suitable to the analysis of drinking water where the very low concentration must be determined. HS is suitable to waste water analysis because of the easiness of the operation. The repeatability was good and similar in both methods. For the contamination of the former sample, both methods were tough and could be used without any problems. The matrix effect which could change the equilibrium parameters in HS method was find negligible in many components. The actual samples such as tap water and river water were analyzed with both methods concerning 16 components regulated in Korea.

  • PDF

A Study on BTEX Concentration of Soil's Network in Seoul (서울의 토양측정망중 BTEX 농도 조사에 관한 연구)

  • 김광래;이재영;박찬구;엄석원
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.45-53
    • /
    • 1999
  • The soil samples were measured at 90 sites of Soil's Network In 1997~1998 which was established for the investigation of soil contamination in Seoul. This study was more focused to measure and analyze for BTEX(Benzene, Toluene, Ethylbenzene and Xylene) concentration in the Soil Network. Also, the samples were analyzed by Purge & Trap method. As a result, the BTEX were detected at all sampling sites in Seoul. The Min. Max and Mean BTEX concentration were respectively 0.047mg/kg, 2.618mg/kg and 0.437mg/kg in 1998. The concentration of the BTEX detected at all sampling sites was lower than that of the intervention standards(at industrial areas) of Soil Preservation Act.

  • PDF

Rapid Measurement of VOC Using an Analysis of Soil-Gas (Soil-Gas의 분석을 이용한 휘발성 유기화합물 오염도 신속측정)

  • 김희경;조성용;황경엽
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.3-9
    • /
    • 1998
  • This paper presents soil-gas surveying technique to delineate an area contaminated with volatile organic compounds, which are common solvents and constituents of gasoline. The sampling method of soil-gas surveying is 1) grab sampling, which actively takes sample using a pump, or 2) passive sampling, which takes sample through diffusion in a trap filled with absorbent. The grab sampling shows the level of contamination at a certain location at a certain time, while the passive sampling shows the change in the contamination at a certain location. The analysis of soil gas can be performed with 1) a small portable detectors such as PID (photoionization detector) or FID (flame-ionization detector) to measure the total hydrocarbon in the soil gas, 2) a gas detector tube, which is filled with indicator reagents and changes its color with concentrations of the gas of interest, or 3) a portable GC (gas chromatograph), which can analyze different compounds simultaneously. The soil-gas surveying technique is a much less expensive method to investigate area contaminated volatile organic compounds and thus can be used as a screening tool to identify an area, which needs to be further investigated.

  • PDF

A Comparison of Different Extraction Methods for the Volatile Components of Anise(Pimpinella anisum L.) (추출방법에 의한 아니스의 휘발성 성분 조성 비교)

  • Kown, Young-Ju;Jang, Hee-Jin;Kwag, Jae-Jin;Kim, Ok-Chan;Choi, Young-Hyun;Lee, Jae-Gon
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.144-147
    • /
    • 1997
  • Different isolation methods for the volatile components of Anise(Pimpinella anisum L.) are compared in terms of the difference of components obtained with each analytical procedure. These methods include headspace(purge & trap) sampling procedure, simultaneous distillation extraction(SDE), steam distillation and solvent extraction. Total 43 components were identified by? comparing gas chromatography retention time and mass spectral data. Different isolation techniques result in compositionally different isolates. The headspace(purge & trap) sampling procedure was found to be the best method of choice for a qualitative analysis of the volatile components.

  • PDF

Identification of Coffee Fragrances Using Needle Trap Device-Gas Chromatograph/Mass Spectrometry (NTD-GC/MS)

  • Eom, In-Yong;Jung, Min-Ji
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1703-1707
    • /
    • 2013
  • A fast and simple sampling and sample preparation device, (NTD) has been developed and applied to sample and analyze volatile components from ground coffee beans. Coffee fragrances and other volatile organic compounds (VOCs) were sampled by the NTD and then analyzed by gas chromatograph-mass spectrometry (GC/MS). Divinylbenzene (DVB) particles (80/100 mesh size) were the sorbent bed of the NTD. More than 150 volatile components were first identified based on the database of the mass library and then finally 30 fragrances including caffeine were further confirmed by comparing experimental retention indices (i.e. Kovat index) with literature retention indices. Total sampling time was 10 minutes and no extra solvent extraction and/or reconstitution step need. Straight n-alkanes (C6-C20) were used as retention index probes for the calculation of experimental retention indices. In addition, this report suggests that an empty needle can be an alternative platform for analyzing polymers by pyrolysis-GC/MS.

Bayesian Analysis for Multiple Capture-Recapture Models using Reference Priors

  • Younshik;Pongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.165-178
    • /
    • 2000
  • Bayesian methods are considered for the multiple caputure-recapture data. Reference priors are developed for such model and sampling-based approach through Gibbs sampler is used for inference from posterior distributions. Furthermore approximate Bayes factors are obtained for model selection between trap and nontrap response models. Finally one methodology is implemented for a capture-recapture model in generated data and real data.

  • PDF