Biodiversity of Invertebrate on Organic and Conventional Pear Orchards

유기와 관행재배 배 과수원의 무척추동물의 종 다양성 연구

  • 김도익 (전남농업기술원 친환경연구소 농업연구사) ;
  • 김선곤 (전남농업기술원 연구개발국) ;
  • 고숙주 (전남농업기술원 연구개발국) ;
  • 강범용 (전남농업기술원 연구개발국) ;
  • 최덕수 (전남농업기술원 연구개발국) ;
  • 임경호 (전남농업기술원 연구개발국) ;
  • 김상수 (순천대학교 원예식물의학부)
  • Received : 2010.02.26
  • Accepted : 2010.10.05
  • Published : 2011.03.31

Abstract

This research was carried out to investigate invertebrate fauna with organic and conventional pear orchards, which used four collected methods; soil sampling for soil microorganism, pitfall, malaise, and black light trap for over ground species. Collected species were 37 species, 1,184 individuals in organic and 28 species, 501 individuals by soil sampling in conventional pear fields. Those were 38 species, 646 individuals and 29 species, 440 individuals by pitfall trap, 55 species 650 individuals and 47 species, 508 individuals by malaise trap, and 23 species, 201 individuals and 9 species, 42 individuals by black light trap. Collembola was collected 389 individuals in organic which was 5 times than in conventional in soil sampling. In pitfall trap, that was 183 individuals which was 3 times. The diversity indices of organic pear orchards were 1.956 in May, 2.638 in August and those of conventional was 1.426 in May, 2.011 in August in soil sampling. In pitfall trap, the dominant species were spiders, collembollan, and coleopteran. Among Coleoptera, indicator insects for the evaluation of agricultural environment suggested were Eusilpha jakowelewi as organic pear orchard and Anisodactykus punctatipennis and Pheropsophus jessoensis as conventional. Malaise trap was collected dominant species as Diptera and Hymenoptera of Braconidae and Ichneumonidae. The diversity indices of organic pear orchards were 2.952, 3.120, and 2.010 in pitfall, malaise and black light trap in over ground invertebrate sampling. The highest diversity was in malaise trap. The higher diversity indices, the lower dominance indices.

유기 배 과수원의 생물종 다양성을 조사하기 위해 토양 미소동물은 토양채취를 하였으며 지상부의 생물 조사는 pitfall 트랩, malaise 트랩, 유아등을 사용하여 채집하였다. 토양채취에서는 유기재배에서 37종 1,184마리, 관행 재배 28종 501마리였으며 pitfall 트랩에서는 각각 38종 648마리, 29종 440마리였다. malaise 트랩과 유아등에서는 각각 55종 650마리, 47종 508마리와 23종 201마리, 9종 42마리였다. 토양채취에서 톡토기목이 389마리로 많이 채집되었는데 관행재배지 보다 5배 이상 많이 채집되었으며 pitfall 트랩에서도 183마리로 3배 이상 채집되어 지표생물로 선발되었다. 토양미소동물의 유기재배지의 종 다양도는 3월에 1.956, 8월에 2.638로 관행의 1.426, 2.011보다 더 높아 유기 재배지에서 생물 다양성이 더 높았다. Pitfall 트랩에서 주로 출현한 종들은 거미류, 톡토기류, 딱정벌레였다. 딱정벌레 중에 관행재배지에는 점박이먼지벌레, 폭탄먼지벌레가 유기재배지에서는 큰넓적송장벌레가 지표생물이 될 가능성이 높았다. malaise 트랩에 의한 곤충종은 벌목, 파리목이 많이 채집되었으며, 그중에서 벌류는 고치벌과 맵시벌이 주를 이루었다. 지상부 생물의 종 다양성 조사 결과, pitfall 트랩의 종다양도가 유기재배지에서 2.952, 관행 2.587이었으며, malaise 트랩은 유기 3.120, 관행 2.398, 유아등은 유기 2.010, 관행 1.507로 나타나 malaise 트랩에서의 종 다양도가 가장 높았다.

Keywords

References

  1. 권영한.노태호.이현우.정홍락. 2006. 환경평가에 있어 생물다양성 항목의 도입방안. 한국환경정책평가연구원. 161p.
  2. 김명현.방혜선.한민수.홍혜경.나영은.강기경.이정택.이덕배. 2009a. 식생유형이 토양무척추동물 분포에 미치는 영향. 한국환경농학회지 28(2): 125-130.
  3. 김종선.김도익.김선곤.강범용.고숙주.임경호.김홍재. 2009b. 유기농업논에서 저서성 대형무척추 동물의 다양성. 한국유기농업학회지 17(2): 193-209.
  4. 김충실.이상호. 2009. 친환경 농산물에 대한 소비자와 유통업자의 구매의향 비교분석. 한국유기농업학회지 17(3): 291-306.
  5. 김태흥.홍용.최낙중. 2009c. 농생태계 지렁이 생물지표종 선발. Korea. J. Environ. Biol. 27(1): 40-47.
  6. 박근호.조수원. 2007. 채집방법과 시기 및 빈도에 따른 곤충의 다양성 비교. 한응곤지 46(3): 375-383.
  7. 손상목. 2007. 유기농업. 330p. 향문사.
  8. 이승일.정종국.최재석.권오길. 2005. 연엽산 일대 딱정벌레목의 군집구조 및 계절적 변동에 관한 연구. Korean. J. Environ. Biol. 23(1): 71-88.
  9. 이종남.고병구.노기안.한민수.김민경.곽한강.박문희. 2003. 친환경 농업 시범마을에 대한 환경 영향 평가. 한국환경농학회지 22(4): 246-250.
  10. 정종국.이승일.최재석.권오길. 2005. 채집법에 따른 연엽산 일대 딱정벌레목의 출현 상 비교 분석. Korean. J. Environ. Biol. 23(3): 228-237.
  11. 靑木淳一. 1996. 일본 토양동물학의 연구 발전사와 현황. 한토동지 19(1): 62-67.
  12. 최성식. 1996. 토양동물학. 원광사. 488p.
  13. 최성식.남궁준. 1976. 논에 서식하는 거미의 조사(I). 한국식물보호학회지 15(2): 89-93.
  14. 최영철.김종길.최지영.김원태.심하식.박병도. 2007. 곤충다양성 지수를 이용한 도시 및 공단지역 농경지 환경평가. 한응곤지 46(3): 363-373.
  15. 최영철.박해철.김종길.심하식.권오석. 2004. 농업환경 평가를 위한 지표곤충 선발. 한응곤지 43(4): 267-273.
  16. 최영철.박해철.김종길.심하식.권오석. 2004. 농업환경평가를 위한 지표곤충 선발. 한응곤지 43(4): 267-273. 삭제요망
  17. 한민수.강기경.김진호.김세근.고문환.박형만. 2000. 논농사에 있어서 생물 다양성 평가. 농과원 농환연보 128-137.
  18. 홍용.김태흥. 2007. 농생태계에 서식하는 지렁이 종 분포조사. Korean. J. Environ. Biol. 25(2): 88-93.
  19. Cho, D. G. 1999. A study on the effects of the biodiversity increase after construction of the artificial wetland. 114p. Graduate School, Seoul National University.
  20. Choi, S. S. 1984. Studies on the analysis of soil microarthropod community in Gwangreung area. Wonkwang University Research Collection 18: 185-235.
  21. Edwards, C. A. and P. J. Bohen. 1996. Biology and ecology of earthworms. Chapman and Hall.
  22. Hamamura, T. 1969. Seasonal fluctuation of spider population in paddy field. Acta Arach 22(2): 40-50. https://doi.org/10.2476/asjaa.22.40
  23. Longino, J. T. and R. K. Colwell. 1997. Biodiversity assessment using structured inventory: capturing the ant fauna of a tropical rain forest. Ecological Application 7: 1263-1277. https://doi.org/10.1890/1051-0761(1997)007[1263:BAUSIC]2.0.CO;2
  24. Magalof. R. 1958. Information theory in ecology. General systematics 3: 36-71.
  25. McNaughton, S. J. 1967. Relationship among functional properties of California Glassland. Nature 216: 168-198.
  26. Park, H. H., C. E. Jung, J. H. Lee and B. Y. Lee. 1996. Soil microarthropods fauna at the Namsan and Gwangreung. Korean J. Soil Zoology 1: 37-47.
  27. Pearse, A. S. 1946. Observations on the microfauna of the Duke forest. Ecol. Monogr. 16(2): 127-150. https://doi.org/10.2307/1943104
  28. Pielou, E. C. 1969. An introduction to mathematical ecology. Wily Interscience, pp. 29-331.
  29. Pielou, E. C. 1975. Ecological diversity. Wiley, Nwe York. 165p.
  30. Seasteds, T. R. 1984. The role of microarthropods in decomposition and mineralization processes. Ann. Rev. Entomol. 29: 25-46. https://doi.org/10.1146/annurev.en.29.010184.000325
  31. Wolfgang B., A. Harenberg, J. Zimmerman, and B. Wei. 2003. Biodiversity, the ultimate agri-conventional indicator? Potential and limits for the application of faunistic elements as gradual indicators in agroecosystem. Agriculture Ecosystem & Environment 99-123.