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Bayesian Analysis for Multiple Capture—Recapture Models
using Reference Priors
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Abstract

Bayesian methods are considered for the multiple capture-recapture data. Reference
priors are developed for such model and sampling-based approach through Gibbs
sampler is used for inference from posterior distributions. Furthermore, approximate
Bayes factors are obtained for model selection between trap and nontrap response
models. Finally one methodology is implemented for a capture-recapture model in
generated data and real data.

KEYWORDS : Bayes factor; Capture-recapture model; Gibbs sampler; Heterogeneity with trap
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1. Introduction

The capture-recapture sampling method is an approach to estimate the unknown population

size by a census. The multiple capture-recapture sampling method is the repetition of the

single capture-recapture scheme, We take samples from a population of animals in the i

stage, then there are animals which are marked before the 7% stage or captured first time.

We count the number of marked animals and unmarked animals in the 7% sample, mark the

previously unmarked animals, and return all the sampled animals to the population. This
experiment is performed s stages. Suppose that each animal is captured with probability 2

1=1,---,5in the e stage, the number of marked animals follows the hypergeometric

distribution, and the sample size follows the binomial distribution with probability ;. Then
multiple capture-recapture method follows the product of hypergeometric distribution and
binomial distribution. We may also consider the recapture probability ¢; The details are
discussed in Section 2. Chapman(1952) and Darroch(1958) obtained the maximum likelihood

estimate(MLE) for the population parameter N and variance for this estimate. Darroch(1958)
found that his model did not change the maximum likelihood estimates of the populaiton size .
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Recently the problem of estimating the size of a closed animal population has been
considered by Pollock and Otto(1983) from a classical sampling view-point. Castledine(1981)'s
approach differed from previous ones by introducing prior information about the population
size N and p;. He showed that strong prior knowledge about the capture probabilities could
greatly affect the inference about the population size. Pollock and Otto(1983) considered the
capture probabilities which were constant over sampling times and influenced by trap response
¢;. Castledine(1981) considered the capture probabilities to be same for all animals but with
the probabilities of being changed over sampling times. However he did not considered the
probability of trap response with noninformative priors of N and conjugate priors of 2.
Rodrigues et al.(1988) followed Castledine’s approach but allowing for trap response but with
noninformative priors of N and conjugate priors of p. In their paper, the appropriate model
was chosen by using the Bayes factor. George and Robert(1992) used the Gibbs sampler to
avoid the complexity of Bayesian computation. In this paper, we find the reference prior for

the capture probabilities and the recapture probabilities to our model and the Bayesian model
choice is investigated. And then we consider the posterior characteristics of estimated

parameter N under the suitable model.
The paper is organized as follows. Section 2 derives the reference prior for capture

probabilities = (#;, ", p.) and recapture probabilities c¢= (¢, *, ¢;) In Section 3, two basic

models are considered and the posterior analysis based on the reference prior is investigated
under each model. In Section 4, Bayesian model choice is performed using the Bayes factor. In
section 5, two examples are presented Markov Chain Monte Carlo (Gibbs sampler) is used to
avoid the complicated Bayesian computation.

2. Modeling and Determination of the Reference Priors

2.1 Capture—Recapture Model
As in Castledine(1981), we write N for the unknown population size, s(=2) for the

number of samples taken, p; ,1 < 7< 5 for the probability of each animal to be unmarked in
the 7™ sample, c¢;, 2=<i{<5 for the probability of animal to be marked in the i th sample,
X; for the number of unmarked animals in the 7 th sample, Y; for the number of marked

animals in the % sample (Y;=0)and N; for the number of marked animals just before the

i™ sample (N;=0) It follows by the definitions above that N, =N;+X;= S‘X,-, =1
=

Let n;=X;+Y;1=1,..,slt is assumed that the population remains closed throughout the

realization of the experiment. The case where p;+¢; for some ¢, is called ‘‘the

§ovrs

)
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capture-recpature model with trap response model’’ by Pollock(1975), and it is hereby denoted
by My: If p,=c;for all 7, it is called ‘‘the capture-recapture model with nontrap response
model’’, denoted by M, whichis considered by Castledine(1981).
For the capture-recapture model with trap response, let
Xilps ~ BIN=N;, p), i=1,...,5 (2.1)

and

Yile;~ B(N; ¢;), i=2,...,s (2.2
where B(#n, p) stands for binomial distribution with # trials and success probability p. It is
also assumed that X; is independent of Y, (conditional on N;). For convenience, let ¥ = 0

Then it follows easily that the likelihood function is

LN, 5. cldata) = IsIl{ (N—'N,-) pE(1—p)) N—er,] ,Iilz{ (Nf) ¢;(1—¢p) N,-—y:-]

= *i Vi
o (],Y) inI,{pf’(l —p) TR sz{ elU—c) V) (2.3)

where p=(p; p) <=(cy -, c)and »= Z‘,‘x,— with the restriction that N=#. In

particular if p;=c;, that is the capture-recapture model with nontrap response model. Also
the following prior structure is assumed ;
(N, 2, 0)=m(Nmy( 2, 0) . (2.4)
For specifying a prior distribution for N, the following choices are available ;
(1) Poisson prior on N ;

(2) Gamma-mixed Poisson prior

T N+ a1+ T

?

B _ e—,{/-lN /-la~le_
Jr(N)——fﬂ(M/D?T(/‘)dA— M I(a)b° dar= N a)b®

(3) Jeffreys' prior n#(N) = N~ ! ;
(4) Discrete uniform prior a(N) o<1 |
Rodrigues et al.(1988) considered the case (4) above with the uniform prior of ( p, ¢) under

the same model. In the next section we want to find the reference prior of ( p, ¢).

2.2 Reference Prior

When there are no precise information about parameters, we usually use noninformative
priors. But the determination of reasonable noninformative priors in multiparameter problems is
not easy ; Bernardo(1979) pointed out that if we were interested in a subset of the parameters
and the rest was to be nuisance parameters, then Jeffreys’ prior, common noninformative prior
may be inappropriate for representing vague or little prior information. In order to overcome
this problem, Bernardo(1979) proposed the reference prior approach for the development of the
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noninformative prior. Ye(1994) and Sun and Ye(1995) used Bayesian reference prior approach
widely. Especially, Chung and Dey(1998) considered the reference prior for the estimation of
intraclass correlation for balanced random effects models.

In Berger and Bernardo(1992)'s reference prior approach, the ordered group is very
important. That is, the formm of reference priors can be changed by the ordered grouping.

Therefore the notation such as {p1, pg, ", Ps €2, **+, C Will be used to specify the group and
the importance of parameters; {py, pg, ***, 0, Cg, ==, ctheans that p, is most important and ¢,
is least important. {(py, py, ", Ds Co, -, C)Henotes that pp, -, ¢, are all equl likely. In
general, under our model the reference prior distributions for different groups of ordering of
{b1, D9, ", Ds, 3, **, CJs obtained. The following lemmas are useful to find the reference
priors.

Assuming the parametric model p(x|8@), 6=(8,, -, 0,)=® be such that the Fisher

information matrix
2
HO) = — E x5 57 57 080(X10)

Lemma 2.1 (Reference Prior : Bernardo and Smith(1994)) If H( & is block diagonal (e,
6 +++, 8 yare mutually orthogonal), with

hu(6) 0 0
mo=| 0 0 o
0 0 - k(6

Furthermore, if

1
{hjj} 2 :fj(ej)gj(e)

where g;(6) does not depend on 8, the reference prior, 7(#) is given by

w(0) e I1 £,(0) .

Lemma 2.2 For the capture-recapture model (2.3), let py=1_
E(X;) = NA—p)1—p)(1=p;-)p, , i=1,...,s
and
E(Y;) = NC;{?I—F(I_Pl)Pz"’“'+_Z§,'—1E(l“ﬁj)} , 1= 2,...,8.

Proof. Its proof is very straightforward using the double expectations and mathematical
inductions.

Lemma 2.3 For 723 and any p;,



Bayesian Analysis for Multiple Capture-Recapture Models using Reference Priors 169

it —p)ps+ -+ by Jlj(l_Pj) + E(I_Pj)=1-
Proof. It easily follows from simple algebra.
Theorem 2.1 Under the capture-recapture model with nontrap response model M, the

reference prior of p is

Ty o 1 . (2.6)
\/ inIl.l')z'(l — )

Proof. The likelihood under the model M, is

x —x NMNZ Nz' x oty —{z.+y,
LN, ddet) = () o120 " Ijz{( - )(y_)p,~+ (=5 "

Using Lemma 2.2, the Fisher information matrix under M, is given by

N
p1(1— 1) 0 0
N
0 p2(1— 1) 0
H(p) =
N
0 0 (1 —p5)

where p= (P, s, =+, ps)Then set

L
{h ()} 2 = f{p)g{p)

where

-1 () =
;)= \/m . g(=N.

Therefore, by the equation(2.5) in Lemma 2.1, the reference prior under M is given by

my o< 1
\/ zI:IIPZ(l _pz)

Theorem 2.2 For the capture-recapture model with the trap response model M; in (2.3), the

reference prior distribution for (py, ", %, €3, **,cib given:

T < L . (28)
\/ n1—-p) leﬁf(l ~pell—c;)

Proof. Under the model M; the Fisher information matrix is diagonal matrix composed by

[ Hi(2, <) 0
H(c)—( o Ay Jz,.c)’) (2.9)
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where
Hi(p, 0=
and
Hy 2, 0=
where

— N 0
n(1—p1)
N(1 _171)
pa(1—p2)
N(1—p)(1—py)
p3(1— p3)
NITa-»)
0 ps(]-_ps)
Npy
c(1—¢p) 0
Np + (1= p1)ba)
63(1 - Ca)
N(p+ QA —p1)py+ (1= 1)1 — po)b3)
C4(1_C4) )
0 s

Ny + A=)+ (L—p)A =g+ + A —p) (U —pg)b1)

hs,s_

Hy(p, o=

c(1—cy)
Using Lemma 2.3, H,( p, ¢) can be simply expressed as
Npy
Cz(l - Cz) 0
M1- TT— )
cs(1—c3)
M1= (-5
04(1 - C4)
M- TTa-s»
0 c{l—cy)

Let

and

where

1
(D)) 2 =Fpnele)  j=1,s

1
() = flepgla  i=2.1.s
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_ 1 el N T — g 1
fj(ﬁj)—m . g N;l;]:(l P, 7=1,,, s

_ 1 B = _
ff(cf)*m , gj(_Cl—\/N(l_:lI(l—Ci)), =2, =, s,

and A% means the diagonal element of Hy(p, o), k=1,2.

and

Therefore, by the equation (2.5) in Lemma 2.1 the reference prior is given by

1
Ty <
\/ m(1—1p1) inIzpi(l —pcfl—cy)

Corollary 2.1 Under the model M; in (2.3), the reference prior distribution of any

permutation of {py,*, 5, ¢z, -, Cds given by
T << 1
Wl(l—pl) zlilzpi(l—pf)cz(l— c:)

Proof. Its proof is similar to the proof of Theorem 2.2 .

(2.10)

Remark 2.1 From the Fisher information matrix in (29), the Jeffreys’ prior of
(pl ’ ".1p5‘) CZ’ "t Cﬁik

Ta-» a- ]I]i(l—ﬁj)]

e ea = 1
sz(ih, » Ds, C2, »Cs) J pl(l_pl) 1={ pz(l—pz) X Ci(]__Ci)

3. Posterior Distribution
Throughout this section we use the following notations. Brackets are used to denote
densities; for example, joint, conditional and marginal forms as [X, Y], [XIYhnd [X]
respectively.

3.1 Capture—Recapture Model with nontrap response M,

Under the reference prior of = (py,*, p,) in (2.6), the joint posterior distribution is

[N, tldatales (N} TI{p7 "> (15 ") ] I‘I‘p-lu—p-) ) (3.1)

By the direct computation, the marginal posterior distribution of N given data is obtained as

follows;

[M data] = [N, pldata) dp-dp,

I+ yit 5 )TN= %= it =)
7 I 2 i I 2
oc(f?\f) 2N 11{ WD } . (3.2)
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Thus we can get the recursive relation of [Mdatal as follows;

[ N+ 1|data] 1 a(N+1) 1

= —X;—y 50 . .

[ Nldatal (N+1—-pPWN+1D L o) & {N Tyt } (3.3)
, [ ] . . .

Since ]\[[]-\'}Ilziaiﬁa is expressed as the form in (3.3), [Mdata] may sometimes be

approximated rather than accurately by recursion, if u é\([]_\i_])l is readily available such as

when #(N) is Poisson. But we cannot get any analytic forms of the marginal posterior

densities of [p;datal. So we apply Gibbs sampler to get the marginal posterior density

[ p;ldatal. Then the following conditional distributions are needed;

N
(M2, data)= () { TL(1—2} =, (34
for 1=1,-,s
[p:dN, p;, 71, data] = Beta(x;+ yﬁ-—%—,N— Xi— v+ %‘) , (35)

where Beta(a, ) means beta distribution function with parameters  and b&.
For the simulation of N from [M..datal
if m(N)= Py(A) where P; denotes Poisson with mean A, then

[N 2, datales g A TT-90) S o ks (ia-»)

and thus
[N 719, data] ~ Py(2 JL(1=2)).
If 7(N)= N}then

[M p,datal =« 7,—,(_,9]1—_7,)_,{ lliIl(l—Pz)}NTlv

A - TTa -} {1-(- TTa- ) o

and thus
[N, data] ~ NB(r,1— [1(1—p)

where NB(#, p) denotes negative binomial distribution function with parameters # and p.

Suppose Gamma-mixed Poisson is given. Then

¥ TN+ (1 +5) ~ ¥
NI(2)b°

(M 2, data] e~ { T -5}
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N—r

o (Nta—-1! _ _ b \({_¢1_ _ b
o it Wa—2 ) {10 a-» 1))
Therefore,
[N+ alp, data] ~ NB(a+ r,1— IIiII(l—pi)?i—i')

where a and b are shape and scale parameters of gamma distribution respectively.

3.2 Capture-Recapture Model with trap response M,
Under the reference prior of (b, 0)=(py,"" b, Cy, -, 2 (24), the joint posterior
distribution is
[N, 5, cldatal o () TLpP(1=p0 " ¥ " T cP(1—c) ™™
x 1 () . (3.6)
| 21— 0 T o1 e - ¢

By the direct computation, the marginal posterior distribution of N given data is obtained

as follows;

[Nldata] = f[N! -21 —Cldata] dp]_ e dps dC2 "t dCS

Nyt 5 )DNy= 3+ 5) Nt ) N=N= x4 %)
< U TN, +1) IIN-N+1
[(x1+—%)1’(N~x1+—%-) ¥
x eramy (r)n'(N) . (3.7)

Since we cannot get any analytic forms of the marginal posterior densities, we apply Gibbs
sampler to get the marginal posterior density [p;ldata]l . Then the following conditional

distributions are needed;

[M 2, data] = (% ,Il(l_ p,A)Nfr(N) (3.8)
for 7=1,-,s
(5N, 2, 7+i, ¢, data) = Beta(x,+ 4, N~ Ny—x+ ) (39)
and for 1=2,--,s
[cilN, 8, ¢;, j#1, data] = Beta(y;+ —%- JNi— v+ —%) A (3.10)

Note that by the structure of [¢;|N, 2, c;, j#1,data] only [N, c,datal and [piIN,p;,

j#i, ¢, data]are needed for Gibbs sampler. The simulation of N from [Mp.data] |, is
exactly same as the method in nontrap model.
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4. Bayesian Model Choice
In this section, we test the capture-recapture model with nontrap response M, v.s. the
capture-recapture model with trap response model M) using Bayes factor ( BF). The formal
Bayesian model choice procedure goes as follows. Let w; be the prior probability of M; 1=0,1

and let A3M;) be the predictive distribution for the model M; , ie.
[ml; = AAM) = [ Ay1 0, M) plM)dz . (1)

If y is the observed data, then we choose the model yielding the larger w; Ay|M;). Often

we set w;= —%and compute the Bayes factor (or M, with respect to M;), given by

AM,) [ ml,

BF = =
AMy) [m];
Kass and Raftery(1995) suggested interpretive ranges for the Bayes factor. In general, M, is

supported if BF>1 .
More generally, assume that Y is distributed to Av|8) and #(B) is the prior of A Then

we want to estimate [m] = j Av|B) n(B) dfasing the importance sampling method. Let us
consider 7(Aly) as the importance sampling function. Then the Markov Chain Monte Carlo
method, particularly Metropolis algorithm and Gibbs sampler, is used to get the sample from

. ) G )
the posterior density 7(Ay). Let {8 @}~ be Gibbs outputs as above where G means we

repeat the Gibbs sampler G times. Then by Monte Carlo method, the approximating marginal

3 w,/(9189) 2(8®) (B B)
density of ¥ i =&l —— wh - Si = th
ensity of Y is Twl lewg where w,= 23y ince 7(Aly) [m] e
=

approximation can be expressed as

[l = [ glf(ylﬁ(g))]_l

Also, this final form is mentioned in Kass and Raftery(1995) and Chung(1997) used the
form (4.3) to choose the link function of binary regression model using Bayesian approach.

(4.3)

In our structure, the following BF is used to compare nontrap response model M, with
trap response model M;
G
1
[ Gl 21 [datalN(g)’p (g)]
1 N , 1
JI=‘IZ{ Hy]+ 2 )I—(NI y]+ 2 ) I(-N]+1) [ G2 g=l D[a’atalN(g),ﬁ (g)]l

BF=~ - , (44
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where

[datd|N, £],= Il[ (N" Ni) (Zj) P N_x:_yl]

X

and {N©@, p#} ;31:1 is Gibbs output using the full conditional distributions [Nl|p,data] and
[N, p; j#1, datalin (3.4) and (35) respectively, and

[ datalN, pl, = szI[ (N— Ni) (J;/}) 7 (1—p) N_Nl_x!}

=1 X;

G, . . . " . .
and {N©@ p&) ¢=1 is Gibbs output using the full conditional distributions [N|p.data] and
[2:N, p; 771, datalin (3.8) and (3.9) respectively.

5. Applications

5.1 Simulation Study
We illustrate our proposed method with generated data under different priors. Data set in

Table 1 is generated with different values of p; and c¢; Therefore, the generated data is

considered as that came from the capture-recapture model with trap response M.

Table 1 Generated Data Sets

i 1 2 3 4 5 6 7 8 9
bi 010 012 013 015 009 005 010 012 020
Ci 000 009 008 010 009 0152 008 010 013
x; 24 27 27 27 23 9 19 21 28
Vi 0 2 4 8 10 23 11 19 17

For the reference priors in (2.6) and (2.8) and Poisson prior of N, we generate a Gibbs
sequence of length 20,000 with 100 different initial values using IMSL subroutines. Table 2
lists the means, the standard deviations and a 95% credible intervals for estimated N
obtained from the 2.5% and 97.5% gquantiles.

Table 2. Posterior characteristics of N

M, M,

A | Mean of N SD.of N %it::jble Mean of N SD. of N 95?1;;2?16
300 311 34.087 (264,365) 259 58.114 (207,370)
400 378 45.367 (309,458) 379 59.812 (237,463)
200 455 45.659 (360,539) 490 34.610 (433,541)




176 Younshik Chung and Pongsu Park

In table 2, S.D. denotes the standard deviation. The wide variability in posterior characteristics
shows the sensitive dependence on fixed choices of A. Since the choice of the estimate of A
is not of interest in this paper, the estimate of A is not decided but we can determine its
estimate using the empirical Bayes method or ML-II method. Next we consider the Bayesian
model choice using the approximate Bayes factor in (4.4) with different value of A . Table 3

indicates that our generated data is fitted to capture-recapture model with trap response M;

since log(BF) is very smaller than zero.

Table 3. Bayes Factor with Poisson( A ) prior

A Log(BF) Choice of model
300 -19.11 M
400 -5.605 M,
500 -32.036 M

5.2 Gordy Lake Sunfish Data
We briefly illustrate our techniques on the famous Gordy Lake sunfish data set investigated
by Castledine(1981) and George and Robert(1992). As it is shown in Table 4, it consists of

s=14 capture occasions from a population of sunfish. At the ¢ " sample, ; fish are captured

out of which y; have been previously captured. Thus, #» = il (ni—y) = i‘xi = ik3&he

total number of fishes which are captured differently .

Table 4. Gordy Lake Sunfish Data

1 1 2 3 14| 5 6 7 8 |9 (10|11 ]12 13| 14

x| 10027 | 17| 7 1 5 6 |15 9 | 18|16 | 5 7 119

yi| O 0 0 0 0 0 2 1 5 5 4 2 2 3

Castledine(1981) applied the capture-recapture model with nontrap response M, to this data
using the prior formulation #(N, pla, b) = a(N)[1#(p;|a, bwith Jeffreys’ prior z(N)=N"!
and #(p;la, b) = Beta(a, bfor various fixed (a,b) But instead of treating (ab) as fixed,

George and Robert(1992) pursued the hierarchical approach of putting five different priors on
(a,b). They also used the Gibbs sampler to avoid the complicated Bayesian computation. Here,

we consider the reference priors in (2.6) and (2.8) and Poisson prior N into the models M,

and M;.



Setting initial values by maximum likelihood, we simulated the values of p(k)

N in the Gibbs sequence using IMSL subroutine. Then with different prior parameters,
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Table 5 show the posterior characteristics.

Table 5. Posterior characteristics of N Poisson( A) prior

’

MO Ml
95% credib 959 i
A | Mean of N SD. of N ) credible Mean of N S.D. of N 5_/ credible
interval interval
300 308 41.17 (248,355) 264 60.67 (138,331)
400 394 49.25 (325,454) 336 37.16 (314,439)
500 490 54.80 (412556) 489 4234 (420,539)

Next we compare the nontrap model M, with the trap model M; using the Bayes factor

given in (4.4) . Table 6 says that the trap model M, is strongly supportive since BF<10 ~2

regardless of the values of A.

Table 6. Bayes Factor with Poisson( A ) prior

A Log(BF) Choice of model
300 -10.2473 M,
400 -8.1746 M,
500 -3.8278 M
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