• 제목/요약/키워드: Trap passivation

검색결과 25건 처리시간 0.02초

Polymer semiconductor based transistors for flexible display

  • 이지열;이방린;김주영;정지영;박정일;정종원;구본원;진용완
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.59.1-59.1
    • /
    • 2012
  • Organic thin-film transistors (OTFTs) with printable semiconductors are promising candidate devices for flexible active-matrix (AM) display applications. Yet, stable operation of actual display panels driven by OTFTs has seldom been reported up to date. Here, we demonstrate a flexible reflective type polymer dispersed liquid crystal (PDLC) display, in which inkjet-printed OTFT arrays are used as driving elements with excellent areal uniformity in terms of device performance. As the active semiconductor, a novel, ambient processable conjugated copolymer was synthesized. The stability of the devices with respect to electrical bias stress was improved by applying a channel-passivation layer, which suppresses the environmental effects and hence reduces the density of trap states at the channel/dielectric interface. The combination of high performance and high stability OTFT devices enabled the successful realization of stable operating flexible color-displays by inkjet-printing.

  • PDF

Anneal Temperature Effects on Hydrogenated Thin Film Silicon for TFT Applications

  • Ahn, Byeong-Jae;Kim, Do-Young;Yoo, Jin-Su;Junsin Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권2호
    • /
    • pp.7-11
    • /
    • 2000
  • a-Si:H and poly-Si TFT(thin film transistor) characteristics were investigated using an inverted staggered type TFT. The TFT an as-grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. The poly-Si films were achieved by using an isothermal and RTA treatment for glow discharge deposited a-Si:H films. The a-Si:H films were cystallized at the various temperature from 600$^{\circ}C$ to 1000$^{\circ}C$. As anneal temperature was elevated, the TFT exhibited increased g$\sub$m/ and reduced V$\sub$ds/. V$\sub$T/. The poly-Si grain boundary passivation with grain boundary trap types and activation energies as a function of anneal temperature. The poly-si TFT showed an improved I$\sub$nm//I$\sub$off/ ratio of 10$\^$6/, reduced gate threshold voltage, and increased field effect mobility by three orders.

  • PDF

Laser CVD법에 의한 III-V화합물 반도체 표면의 불활성화 (The passivation of III-V compound semiconductor surface by laser CVD)

  • 이한신;이계신;조태훈;허윤종;김성진;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1274-1276
    • /
    • 1993
  • The silicon-nitride films formed by laser CVD method are used for passivating GaAs surfaces. The electrical Properties of metal-insulator-GaAs structure are studied to determined the interfacial characteristics by C-V curves and deep level transient spectroscopy(DLTS). The SiN films are photolysisly deposited from $SiH_4\;and\;NH_3$ in the range of $100^{\circ}C-300^{\circ}C$ on P type, (100) GaAs. The hysteresis is reduced and interface trap density is lowered to $10^{12}-10^{13}$ at $100^{\circ}C-200^{\circ}C$. The surface leakage current is studied too. The passivated GaAs have a little leakage current compared to non passivated GaAs.

  • PDF

Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors

  • Shin, Hyun-Soo;Ahn, Byung-Du;Rim, You-Seung;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • 제12권4호
    • /
    • pp.209-212
    • /
    • 2011
  • The threshold voltage shift (${\Delta}V_{th}$) under positive-voltage bias stress (PBS) of InGaZnO (IGZO) thin-film transistors (TFTs) annealed at different temperatures in air was investigated. The dramatic degradation of the electrical performance was observed at the sample that was annealed at $700^{\circ}C$. The degradation of the saturation mobility (${\mu}_{sat}$) resulted from the diffusion of indium atoms into the interface of the IGZO/gate insulator after crystallization, and the degradation of the subthreshold slope (S-factor) was due to the increase in the interfacial and bulk trap density. In spite of the degradation of the electrical performance of the sample that was annealed at $700^{\circ}C$, it showed a smaller ${\Delta}V_{th}$ under PBS conditions for $10^4$ s than the samples that were annealed at $500^{\circ}C$, which is attributed to the nanocrystal-embedded structure. The sample that was annealed at $600^{\circ}C$ showed the best performance and the smallest ${\Delta}V_{th}$ among the fabricated samples with a ${\mu}_{sat}$ of $9.38cm^2/V$ s, an S-factor of 0.46V/decade, and a ${\Delta}V_{th}$ of 0.009V, which is due to the passivation of the defects by high thermal annealing without structural change.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF